File size: 18,634 Bytes
80feb1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
from fastapi import APIRouter, Depends, HTTPException
from sqlalchemy.orm import Session
from sqlalchemy import func, desc, extract
from typing import List, Dict, Any
from datetime import datetime, timedelta, timezone
import calendar

from ..database import get_db, Dish, Order, OrderItem, Person, Table, Feedback
from ..models.dish import Dish as DishModel
from ..models.order import Order as OrderModel
from ..models.user import Person as PersonModel
from ..models.feedback import Feedback as FeedbackModel

router = APIRouter(
    prefix="/analytics",
    tags=["analytics"],
    responses={404: {"description": "Not found"}},
)


# Get overall dashboard statistics
@router.get("/dashboard")
def get_dashboard_stats(
    start_date: str = None,
    end_date: str = None,
    db: Session = Depends(get_db)
):
    # Parse date strings to datetime objects if provided
    start_datetime = None
    end_datetime = None

    if start_date:
        try:
            start_datetime = datetime.fromisoformat(start_date.replace('Z', '+00:00'))
        except ValueError:
            raise HTTPException(status_code=400, detail="Invalid start_date format. Use ISO format (YYYY-MM-DDTHH:MM:SS)")

    if end_date:
        try:
            end_datetime = datetime.fromisoformat(end_date.replace('Z', '+00:00'))
        except ValueError:
            raise HTTPException(status_code=400, detail="Invalid end_date format. Use ISO format (YYYY-MM-DDTHH:MM:SS)")

    # Base query for orders
    orders_query = db.query(Order)

    # Apply date filters if provided
    if start_datetime:
        orders_query = orders_query.filter(Order.created_at >= start_datetime)

    if end_datetime:
        orders_query = orders_query.filter(Order.created_at <= end_datetime)

    # Total sales
    total_sales_query = (
        db.query(
            func.sum(Dish.price * OrderItem.quantity).label("total_sales")
        )
        .join(OrderItem, Dish.id == OrderItem.dish_id)
        .join(Order, OrderItem.order_id == Order.id)
        .filter(Order.status == "paid")
    )

    # Apply date filters to sales query
    if start_datetime:
        total_sales_query = total_sales_query.filter(Order.created_at >= start_datetime)

    if end_datetime:
        total_sales_query = total_sales_query.filter(Order.created_at <= end_datetime)

    total_sales_result = total_sales_query.first()
    total_sales = total_sales_result.total_sales if total_sales_result.total_sales else 0

    # Total customers (only count those who placed orders in the date range)
    if start_datetime or end_datetime:
        # Get unique person_ids from filtered orders
        person_subquery = orders_query.with_entities(Order.person_id).distinct().subquery()
        total_customers = db.query(Person).filter(Person.id.in_(person_subquery)).count()
    else:
        total_customers = db.query(Person).count()

    # Total orders
    total_orders = orders_query.count()

    # Total dishes
    total_dishes = db.query(Dish).count()

    # Average order value
    avg_order_value_query = (
        db.query(
            func.avg(
                db.query(func.sum(Dish.price * OrderItem.quantity))
                .join(OrderItem, Dish.id == OrderItem.dish_id)
                .filter(OrderItem.order_id == Order.id)
                .scalar_subquery()
            ).label("avg_order_value")
        )
        .filter(Order.status == "paid")
    )

    # Apply date filters to avg order value query
    if start_datetime:
        avg_order_value_query = avg_order_value_query.filter(Order.created_at >= start_datetime)

    if end_datetime:
        avg_order_value_query = avg_order_value_query.filter(Order.created_at <= end_datetime)

    avg_order_value_result = avg_order_value_query.first()
    avg_order_value = avg_order_value_result.avg_order_value if avg_order_value_result.avg_order_value else 0

    # Return all stats
    return {
        "total_sales": round(total_sales, 2),
        "total_customers": total_customers,
        "total_orders": total_orders,
        "total_dishes": total_dishes,
        "avg_order_value": round(avg_order_value, 2),
        "date_range": {
            "start_date": start_date,
            "end_date": end_date
        }
    }


# Get top customers by order count
@router.get("/top-customers")
def get_top_customers(limit: int = 10, db: Session = Depends(get_db)):
    # Get customers with most orders
    top_customers_by_orders = (
        db.query(
            Person.id,
            Person.username,
            Person.visit_count,
            Person.last_visit,
            func.count(Order.id).label("order_count"),
            func.sum(
                db.query(func.sum(Dish.price * OrderItem.quantity))
                .join(OrderItem, Dish.id == OrderItem.dish_id)
                .filter(OrderItem.order_id == Order.id)
                .scalar_subquery()
            ).label("total_spent"),
        )
        .join(Order, Person.id == Order.person_id)
        .group_by(Person.id)
        .order_by(desc("order_count"))
        .limit(limit)
        .all()
    )

    # Format the results
    result = []
    for customer in top_customers_by_orders:
        result.append({
            "id": customer.id,
            "username": customer.username,
            "visit_count": customer.visit_count,
            "last_visit": customer.last_visit,
            "order_count": customer.order_count,
            "total_spent": round(customer.total_spent, 2) if customer.total_spent else 0,
            "avg_order_value": round(customer.total_spent / customer.order_count, 2) if customer.total_spent else 0,
        })

    return result


# Get top selling dishes
@router.get("/top-dishes")
def get_top_dishes(limit: int = 10, db: Session = Depends(get_db)):
    # Get dishes with most orders
    top_dishes = (
        db.query(
            Dish.id,
            Dish.name,
            Dish.category,
            Dish.price,
            func.sum(OrderItem.quantity).label("total_ordered"),
            func.sum(Dish.price * OrderItem.quantity).label("total_revenue"),
        )
        .join(OrderItem, Dish.id == OrderItem.dish_id)
        .join(Order, OrderItem.order_id == Order.id)
        .filter(Order.status == "paid")
        .group_by(Dish.id)
        .order_by(desc("total_ordered"))
        .limit(limit)
        .all()
    )

    # Format the results
    result = []
    for dish in top_dishes:
        result.append({
            "id": dish.id,
            "name": dish.name,
            "category": dish.category,
            "price": dish.price,
            "total_ordered": dish.total_ordered,
            "total_revenue": round(dish.total_revenue, 2),
        })

    return result


# Get sales by category
@router.get("/sales-by-category")
def get_sales_by_category(db: Session = Depends(get_db)):
    # Get sales by category
    sales_by_category = (
        db.query(
            Dish.category,
            func.sum(OrderItem.quantity).label("total_ordered"),
            func.sum(Dish.price * OrderItem.quantity).label("total_revenue"),
        )
        .join(OrderItem, Dish.id == OrderItem.dish_id)
        .join(Order, OrderItem.order_id == Order.id)
        .filter(Order.status == "paid")
        .group_by(Dish.category)
        .order_by(desc("total_revenue"))
        .all()
    )

    # Format the results
    result = []
    for category in sales_by_category:
        result.append({
            "category": category.category,
            "total_ordered": category.total_ordered,
            "total_revenue": round(category.total_revenue, 2),
        })

    return result


# Get sales over time (daily for the last 30 days)
@router.get("/sales-over-time")
def get_sales_over_time(days: int = 30, db: Session = Depends(get_db)):
    # Calculate the date range
    end_date = datetime.now(timezone.utc)
    start_date = end_date - timedelta(days=days)

    # Get sales by day
    sales_by_day = (
        db.query(
            func.date(Order.created_at).label("date"),
            func.count(Order.id).label("order_count"),
            func.sum(
                db.query(func.sum(Dish.price * OrderItem.quantity))
                .join(OrderItem, Dish.id == OrderItem.dish_id)
                .filter(OrderItem.order_id == Order.id)
                .scalar_subquery()
            ).label("total_sales"),
        )
        .filter(Order.status == "paid")
        .filter(Order.created_at >= start_date)
        .filter(Order.created_at <= end_date)
        .group_by(func.date(Order.created_at))
        .order_by(func.date(Order.created_at))
        .all()
    )

    # Create a dictionary with all dates in the range
    date_range = {}
    current_date = start_date
    while current_date <= end_date:
        date_str = current_date.strftime("%Y-%m-%d")
        date_range[date_str] = {"order_count": 0, "total_sales": 0}
        current_date += timedelta(days=1)

    # Fill in the actual data
    for day in sales_by_day:
        date_str = day.date.strftime("%Y-%m-%d") if isinstance(day.date, datetime) else day.date
        date_range[date_str] = {
            "order_count": day.order_count,
            "total_sales": round(day.total_sales, 2) if day.total_sales else 0,
        }

    # Convert to list format
    result = []
    for date_str, data in date_range.items():
        result.append({
            "date": date_str,
            "order_count": data["order_count"],
            "total_sales": data["total_sales"],
        })

    return result


# Get chef performance metrics
@router.get("/chef-performance")
def get_chef_performance(days: int = 30, db: Session = Depends(get_db)):
    # Calculate the date range
    end_date = datetime.now(timezone.utc)
    start_date = end_date - timedelta(days=days)

    # Get completed orders count and average time to complete
    completed_orders = (
        db.query(Order)
        .filter(Order.status.in_(["completed", "paid"]))
        .filter(Order.created_at >= start_date)
        .filter(Order.created_at <= end_date)
        .all()
    )

    total_completed = len(completed_orders)

    # Calculate average items per order
    avg_items_per_order_query = (
        db.query(
            func.avg(
                db.query(func.count(OrderItem.id))
                .filter(OrderItem.order_id == Order.id)
                .scalar_subquery()
            ).label("avg_items")
        )
        .filter(Order.status.in_(["completed", "paid"]))
        .filter(Order.created_at >= start_date)
        .filter(Order.created_at <= end_date)
        .first()
    )

    avg_items_per_order = avg_items_per_order_query.avg_items if avg_items_per_order_query.avg_items else 0

    # Get busiest day of week
    busiest_day_query = (
        db.query(
            extract('dow', Order.created_at).label("day_of_week"),
            func.count(Order.id).label("order_count")
        )
        .filter(Order.created_at >= start_date)
        .filter(Order.created_at <= end_date)
        .group_by(extract('dow', Order.created_at))
        .order_by(desc("order_count"))
        .first()
    )

    busiest_day = None
    if busiest_day_query:
        # Convert day number to day name (0 = Sunday, 1 = Monday, etc.)
        day_names = list(calendar.day_name)
        day_number = int(busiest_day_query.day_of_week)
        busiest_day = day_names[day_number]

    return {
        "total_completed_orders": total_completed,
        "avg_items_per_order": round(avg_items_per_order, 2),
        "busiest_day": busiest_day,
    }


# Get table utilization statistics
@router.get("/table-utilization")
def get_table_utilization(db: Session = Depends(get_db)):
    # Get all tables
    tables = db.query(Table).all()

    # Get order count by table
    table_orders = (
        db.query(
            Order.table_number,
            func.count(Order.id).label("order_count"),
            func.sum(
                db.query(func.sum(Dish.price * OrderItem.quantity))
                .join(OrderItem, Dish.id == OrderItem.dish_id)
                .filter(OrderItem.order_id == Order.id)
                .scalar_subquery()
            ).label("total_revenue"),
        )
        .group_by(Order.table_number)
        .all()
    )

    # Create a dictionary with all tables
    table_stats = {}
    for table in tables:
        table_stats[table.table_number] = {
            "table_number": table.table_number,
            "is_occupied": table.is_occupied,
            "order_count": 0,
            "total_revenue": 0,
        }

    # Fill in the actual data
    for table in table_orders:
        if table.table_number in table_stats:
            table_stats[table.table_number]["order_count"] = table.order_count
            table_stats[table.table_number]["total_revenue"] = round(table.total_revenue, 2) if table.total_revenue else 0

    # Convert to list format
    result = list(table_stats.values())

    # Sort by order count (descending)
    result.sort(key=lambda x: x["order_count"], reverse=True)

    return result


# Get customer visit frequency analysis
@router.get("/customer-frequency")
def get_customer_frequency(
    start_date: str = None,
    end_date: str = None,
    db: Session = Depends(get_db)
):
    # Parse date strings to datetime objects if provided
    start_datetime = None
    end_datetime = None

    if start_date:
        try:
            start_datetime = datetime.fromisoformat(start_date.replace('Z', '+00:00'))
        except ValueError:
            raise HTTPException(status_code=400, detail="Invalid start_date format. Use ISO format (YYYY-MM-DDTHH:MM:SS)")

    if end_date:
        try:
            end_datetime = datetime.fromisoformat(end_date.replace('Z', '+00:00'))
        except ValueError:
            raise HTTPException(status_code=400, detail="Invalid end_date format. Use ISO format (YYYY-MM-DDTHH:MM:SS)")

    # Get visit count distribution
    visit_counts_query = db.query(Person.visit_count)

    # Apply date filters if provided
    if start_datetime or end_datetime:
        # Get person IDs who placed orders in the date range
        orders_query = db.query(Order.person_id).distinct()

        if start_datetime:
            orders_query = orders_query.filter(Order.created_at >= start_datetime)

        if end_datetime:
            orders_query = orders_query.filter(Order.created_at <= end_datetime)

        person_ids = [result[0] for result in orders_query.all() if result[0] is not None]
        visit_counts_query = visit_counts_query.filter(Person.id.in_(person_ids))

    visit_counts = visit_counts_query.all()

    # Create frequency buckets
    frequency_buckets = {
        "1 visit": 0,
        "2-3 visits": 0,
        "4-5 visits": 0,
        "6-10 visits": 0,
        "11+ visits": 0,
    }

    # Fill the buckets
    for visit in visit_counts:
        count = visit.visit_count
        if count == 1:
            frequency_buckets["1 visit"] += 1
        elif 2 <= count <= 3:
            frequency_buckets["2-3 visits"] += 1
        elif 4 <= count <= 5:
            frequency_buckets["4-5 visits"] += 1
        elif 6 <= count <= 10:
            frequency_buckets["6-10 visits"] += 1
        else:
            frequency_buckets["11+ visits"] += 1

    # Convert to list format
    result = []
    for bucket, count in frequency_buckets.items():
        result.append({
            "frequency": bucket,
            "customer_count": count,
        })

    return result


# Get feedback analysis
@router.get("/feedback-analysis")
def get_feedback_analysis(
    start_date: str = None,
    end_date: str = None,
    db: Session = Depends(get_db)
):
    # Parse date strings to datetime objects if provided
    start_datetime = None
    end_datetime = None

    if start_date:
        try:
            start_datetime = datetime.fromisoformat(start_date.replace('Z', '+00:00'))
        except ValueError:
            raise HTTPException(status_code=400, detail="Invalid start_date format. Use ISO format (YYYY-MM-DDTHH:MM:SS)")

    if end_date:
        try:
            end_datetime = datetime.fromisoformat(end_date.replace('Z', '+00:00'))
        except ValueError:
            raise HTTPException(status_code=400, detail="Invalid end_date format. Use ISO format (YYYY-MM-DDTHH:MM:SS)")

    # Base query for feedback
    feedback_query = db.query(Feedback)

    # Apply date filters if provided
    if start_datetime:
        feedback_query = feedback_query.filter(Feedback.created_at >= start_datetime)

    if end_datetime:
        feedback_query = feedback_query.filter(Feedback.created_at <= end_datetime)

    # Get all feedback
    all_feedback = feedback_query.all()

    # Calculate average rating
    total_ratings = len(all_feedback)
    sum_ratings = sum(feedback.rating for feedback in all_feedback)
    avg_rating = round(sum_ratings / total_ratings, 1) if total_ratings > 0 else 0

    # Count ratings by score
    rating_counts = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0}
    for feedback in all_feedback:
        rating_counts[feedback.rating] = rating_counts.get(feedback.rating, 0) + 1

    # Calculate rating percentages
    rating_percentages = {}
    for rating, count in rating_counts.items():
        rating_percentages[rating] = round((count / total_ratings) * 100, 1) if total_ratings > 0 else 0

    # Get recent feedback with comments
    recent_feedback = (
        db.query(Feedback, Person.username)
        .outerjoin(Person, Feedback.person_id == Person.id)
        .filter(Feedback.comment != None)
        .filter(Feedback.comment != "")
    )

    # Apply date filters if provided
    if start_datetime:
        recent_feedback = recent_feedback.filter(Feedback.created_at >= start_datetime)

    if end_datetime:
        recent_feedback = recent_feedback.filter(Feedback.created_at <= end_datetime)

    recent_feedback = recent_feedback.order_by(Feedback.created_at.desc()).limit(10).all()

    # Format recent feedback
    formatted_feedback = []
    for feedback, username in recent_feedback:
        formatted_feedback.append({
            "id": feedback.id,
            "rating": feedback.rating,
            "comment": feedback.comment,
            "username": username or "Anonymous",
            "created_at": feedback.created_at.isoformat(),
        })

    # Return analysis
    return {
        "total_feedback": total_ratings,
        "average_rating": avg_rating,
        "rating_counts": rating_counts,
        "rating_percentages": rating_percentages,
        "recent_comments": formatted_feedback,
        "date_range": {
            "start_date": start_date,
            "end_date": end_date
        }
    }