Spaces:
Sleeping
Sleeping
File size: 17,668 Bytes
469eae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import json
import time
import uuid
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
from httpx._models import Headers, Response
import litellm
from litellm.litellm_core_utils.prompt_templates.common_utils import (
get_str_from_messages,
)
from litellm.litellm_core_utils.prompt_templates.factory import (
convert_to_ollama_image,
custom_prompt,
ollama_pt,
)
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues, ChatCompletionUsageBlock
from litellm.types.utils import (
GenericStreamingChunk,
ModelInfoBase,
ModelResponse,
ProviderField,
)
from ..common_utils import OllamaError, _convert_image
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class OllamaConfig(BaseConfig):
"""
Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters
The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters:
- `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0
- `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1
- `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0
- `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096
- `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1
- `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0
- `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8
- `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64
- `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1
- `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7
- `seed` (int): Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. Example usage: seed 42
- `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:"
- `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1
- `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42
- `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40
- `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9
- `system` (string): system prompt for model (overrides what is defined in the Modelfile)
- `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile)
"""
mirostat: Optional[int] = None
mirostat_eta: Optional[float] = None
mirostat_tau: Optional[float] = None
num_ctx: Optional[int] = None
num_gqa: Optional[int] = None
num_gpu: Optional[int] = None
num_thread: Optional[int] = None
repeat_last_n: Optional[int] = None
repeat_penalty: Optional[float] = None
temperature: Optional[float] = None
seed: Optional[int] = None
stop: Optional[
list
] = None # stop is a list based on this - https://github.com/ollama/ollama/pull/442
tfs_z: Optional[float] = None
num_predict: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
system: Optional[str] = None
template: Optional[str] = None
def __init__(
self,
mirostat: Optional[int] = None,
mirostat_eta: Optional[float] = None,
mirostat_tau: Optional[float] = None,
num_ctx: Optional[int] = None,
num_gqa: Optional[int] = None,
num_gpu: Optional[int] = None,
num_thread: Optional[int] = None,
repeat_last_n: Optional[int] = None,
repeat_penalty: Optional[float] = None,
temperature: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[list] = None,
tfs_z: Optional[float] = None,
num_predict: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
system: Optional[str] = None,
template: Optional[str] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_required_params(self) -> List[ProviderField]:
"""For a given provider, return it's required fields with a description"""
return [
ProviderField(
field_name="base_url",
field_type="string",
field_description="Your Ollama API Base",
field_value="http://10.10.11.249:11434",
)
]
def get_supported_openai_params(self, model: str):
return [
"max_tokens",
"stream",
"top_p",
"temperature",
"seed",
"frequency_penalty",
"stop",
"response_format",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["num_predict"] = value
if param == "stream":
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "seed":
optional_params["seed"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "frequency_penalty":
optional_params["repeat_penalty"] = value
if param == "stop":
optional_params["stop"] = value
if param == "response_format" and isinstance(value, dict):
if value["type"] == "json_object":
optional_params["format"] = "json"
return optional_params
def _supports_function_calling(self, ollama_model_info: dict) -> bool:
"""
Check if the 'template' field in the ollama_model_info contains a 'tools' or 'function' key.
"""
_template: str = str(ollama_model_info.get("template", "") or "")
return "tools" in _template.lower()
def _get_max_tokens(self, ollama_model_info: dict) -> Optional[int]:
_model_info: dict = ollama_model_info.get("model_info", {})
for k, v in _model_info.items():
if "context_length" in k:
return v
return None
def get_model_info(self, model: str) -> ModelInfoBase:
"""
curl http://localhost:11434/api/show -d '{
"name": "mistral"
}'
"""
if model.startswith("ollama/") or model.startswith("ollama_chat/"):
model = model.split("/", 1)[1]
api_base = get_secret_str("OLLAMA_API_BASE") or "http://localhost:11434"
try:
response = litellm.module_level_client.post(
url=f"{api_base}/api/show",
json={"name": model},
)
except Exception as e:
raise Exception(
f"OllamaError: Error getting model info for {model}. Set Ollama API Base via `OLLAMA_API_BASE` environment variable. Error: {e}"
)
model_info = response.json()
_max_tokens: Optional[int] = self._get_max_tokens(model_info)
return ModelInfoBase(
key=model,
litellm_provider="ollama",
mode="chat",
supports_function_calling=self._supports_function_calling(model_info),
input_cost_per_token=0.0,
output_cost_per_token=0.0,
max_tokens=_max_tokens,
max_input_tokens=_max_tokens,
max_output_tokens=_max_tokens,
)
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return OllamaError(
status_code=status_code, message=error_message, headers=headers
)
def transform_response(
self,
model: str,
raw_response: Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: str,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
response_json = raw_response.json()
## RESPONSE OBJECT
model_response.choices[0].finish_reason = "stop"
if request_data.get("format", "") == "json":
function_call = json.loads(response_json["response"])
message = litellm.Message(
content=None,
tool_calls=[
{
"id": f"call_{str(uuid.uuid4())}",
"function": {
"name": function_call["name"],
"arguments": json.dumps(function_call["arguments"]),
},
"type": "function",
}
],
)
model_response.choices[0].message = message # type: ignore
model_response.choices[0].finish_reason = "tool_calls"
else:
model_response.choices[0].message.content = response_json["response"] # type: ignore
model_response.created = int(time.time())
model_response.model = "ollama/" + model
_prompt = request_data.get("prompt", "")
prompt_tokens = response_json.get(
"prompt_eval_count", len(encoding.encode(_prompt, disallowed_special=())) # type: ignore
)
completion_tokens = response_json.get(
"eval_count", len(response_json.get("message", dict()).get("content", ""))
)
setattr(
model_response,
"usage",
litellm.Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
return model_response
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
custom_prompt_dict = (
litellm_params.get("custom_prompt_dict") or litellm.custom_prompt_dict
)
text_completion_request = litellm_params.get("text_completion")
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
ollama_prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
elif text_completion_request: # handle `/completions` requests
ollama_prompt = get_str_from_messages(messages=messages)
else: # handle `/chat/completions` requests
modified_prompt = ollama_pt(model=model, messages=messages)
if isinstance(modified_prompt, dict):
ollama_prompt, images = (
modified_prompt["prompt"],
modified_prompt["images"],
)
optional_params["images"] = images
else:
ollama_prompt = modified_prompt
stream = optional_params.pop("stream", False)
format = optional_params.pop("format", None)
images = optional_params.pop("images", None)
data = {
"model": model,
"prompt": ollama_prompt,
"options": optional_params,
"stream": stream,
}
if format is not None:
data["format"] = format
if images is not None:
data["images"] = [
_convert_image(convert_to_ollama_image(image)) for image in images
]
return data
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
return headers
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
"""
OPTIONAL
Get the complete url for the request
Some providers need `model` in `api_base`
"""
if api_base is None:
api_base = "http://localhost:11434"
if api_base.endswith("/api/generate"):
url = api_base
else:
url = f"{api_base}/api/generate"
return url
def get_model_response_iterator(
self,
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
sync_stream: bool,
json_mode: Optional[bool] = False,
):
return OllamaTextCompletionResponseIterator(
streaming_response=streaming_response,
sync_stream=sync_stream,
json_mode=json_mode,
)
class OllamaTextCompletionResponseIterator(BaseModelResponseIterator):
def _handle_string_chunk(self, str_line: str) -> GenericStreamingChunk:
return self.chunk_parser(json.loads(str_line))
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
try:
if "error" in chunk:
raise Exception(f"Ollama Error - {chunk}")
text = ""
is_finished = False
finish_reason = None
if chunk["done"] is True:
text = ""
is_finished = True
finish_reason = "stop"
prompt_eval_count: Optional[int] = chunk.get("prompt_eval_count", None)
eval_count: Optional[int] = chunk.get("eval_count", None)
usage: Optional[ChatCompletionUsageBlock] = None
if prompt_eval_count is not None and eval_count is not None:
usage = ChatCompletionUsageBlock(
prompt_tokens=prompt_eval_count,
completion_tokens=eval_count,
total_tokens=prompt_eval_count + eval_count,
)
return GenericStreamingChunk(
text=text,
is_finished=is_finished,
finish_reason=finish_reason,
usage=usage,
)
elif chunk["response"]:
text = chunk["response"]
return GenericStreamingChunk(
text=text,
is_finished=is_finished,
finish_reason="stop",
usage=None,
)
else:
raise Exception(f"Unable to parse ollama chunk - {chunk}")
except Exception as e:
raise e
|