File size: 6,337 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# LiteLLM Proxy Client

A Python client library for interacting with the LiteLLM proxy server. This client provides a clean, typed interface for managing models, keys, credentials, and making chat completions.

## Installation

```bash
pip install litellm
```

## Quick Start

```python
from litellm.proxy.client import Client

# Initialize the client
client = Client(
    base_url="http://localhost:4000",  # Your LiteLLM proxy server URL
    api_key="sk-api-key"               # Optional: API key for authentication
)

# Make a chat completion request
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "user", "content": "Hello, how are you?"}
    ]
)
print(response.choices[0].message.content)
```

## Features

The client is organized into several resource clients for different functionality:

- `chat`: Chat completions
- `models`: Model management
- `model_groups`: Model group management
- `keys`: API key management
- `credentials`: Credential management

## Chat Completions

Make chat completion requests to your LiteLLM proxy:

```python
# Basic chat completion
response = client.chat.completions.create(
    model="gpt-4",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What's the capital of France?"}
    ]
)

# Stream responses
for chunk in client.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Tell me a story"}],
    stream=True
):
    print(chunk.choices[0].delta.content or "", end="")
```

## Model Management

Manage available models on your proxy:

```python
# List available models
models = client.models.list()

# Add a new model
client.models.add(
    model_name="gpt-4",
    litellm_params={
        "api_key": "your-openai-key",
        "api_base": "https://api.openai.com/v1"
    }
)

# Delete a model
client.models.delete(model_name="gpt-4")
```

## API Key Management

Manage virtual API keys:

```python
# Generate a new API key
key = client.keys.generate(
    models=["gpt-4", "gpt-3.5-turbo"],
    aliases={"gpt4": "gpt-4"},
    duration="24h",
    key_alias="my-key",
    team_id="team123"
)

# List all keys
keys = client.keys.list(
    page=1,
    size=10,
    return_full_object=True
)

# Delete keys
client.keys.delete(
    keys=["sk-key1", "sk-key2"],
    key_aliases=["alias1", "alias2"]
)
```

## Credential Management

Manage model credentials:

```python
# Create new credentials
client.credentials.create(
    credential_name="azure1",
    credential_info={"api_type": "azure"},
    credential_values={
        "api_key": "your-azure-key",
        "api_base": "https://example.azure.openai.com"
    }
)

# List all credentials
credentials = client.credentials.list()

# Get a specific credential
credential = client.credentials.get(credential_name="azure1")

# Delete credentials
client.credentials.delete(credential_name="azure1")
```

## Model Groups

Manage model groups for load balancing and fallbacks:

```python
# Create a model group
client.model_groups.create(
    name="gpt4-group",
    models=[
        {"model_name": "gpt-4", "litellm_params": {"api_key": "key1"}},
        {"model_name": "gpt-4-backup", "litellm_params": {"api_key": "key2"}}
    ]
)

# List model groups
groups = client.model_groups.list()

# Delete a model group
client.model_groups.delete(name="gpt4-group")
```

## Low-Level HTTP Client

The client provides access to a low-level HTTP client for making direct requests
to the LiteLLM proxy server. This is useful when you need more control or when
working with endpoints that don't yet have a high-level interface.

```python
# Access the HTTP client
client = Client(
    base_url="http://localhost:4000",
    api_key="sk-api-key"
)

# Make a custom request
response = client.http.request(
    method="POST",
    uri="/health/test_connection",
    json={
        "litellm_params": {
            "model": "gpt-4",
            "api_key": "your-api-key",
            "api_base": "https://api.openai.com/v1"
        },
        "mode": "chat"
    }
)

# The response is automatically parsed from JSON
print(response)
```

### HTTP Client Features

- Automatic URL handling (handles trailing/leading slashes)
- Built-in authentication (adds Bearer token if `api_key` is provided)
- JSON request/response handling
- Configurable timeout (default: 30 seconds)
- Comprehensive error handling
- Support for custom headers and request parameters

### HTTP Client `request` method parameters

- `method`: HTTP method (GET, POST, PUT, DELETE, etc.)
- `uri`: URI path (will be appended to base_url)
- `data`: (optional) Data to send in the request body
- `json`: (optional) JSON data to send in the request body
- `headers`: (optional) Custom HTTP headers
- Additional keyword arguments are passed to the underlying requests library

## Error Handling

The client provides clear error handling with custom exceptions:

```python
from litellm.proxy.client.exceptions import UnauthorizedError

try:
    response = client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": "Hello"}]
    )
except UnauthorizedError as e:
    print("Authentication failed:", e)
except Exception as e:
    print("Request failed:", e)
```

## Advanced Usage

### Request Customization

All methods support returning the raw request object for inspection or modification:

```python
# Get the prepared request without sending it
request = client.models.list(return_request=True)
print(request.method)  # GET
print(request.url)     # http://localhost:8000/models
print(request.headers) # {'Content-Type': 'application/json', ...}
```

### Pagination

Methods that return lists support pagination:

```python
# Get the first page of keys
page1 = client.keys.list(page=1, size=10)

# Get the second page
page2 = client.keys.list(page=2, size=10)
```

### Filtering

Many list methods support filtering:

```python
# Filter keys by user and team
keys = client.keys.list(
    user_id="user123",
    team_id="team456",
    include_team_keys=True
)
```

## Contributing

Contributions are welcome! Please check out our [contributing guidelines](../../CONTRIBUTING.md) for details.

## License

This project is licensed under the MIT License - see the [LICENSE](../../LICENSE) file for details.