Spaces:
Sleeping
Sleeping
File size: 31,976 Bytes
469eae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
"""
What is this?
Provider-specific Pass-Through Endpoints
Use litellm with Anthropic SDK, Vertex AI SDK, Cohere SDK, etc.
"""
import os
from typing import Optional
import httpx
from fastapi import APIRouter, Depends, HTTPException, Request, Response
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.constants import BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
from litellm.proxy._types import *
from litellm.proxy.auth.route_checks import RouteChecks
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.pass_through_endpoints.common_utils import get_litellm_virtual_key
from litellm.proxy.pass_through_endpoints.pass_through_endpoints import (
create_pass_through_route,
)
from litellm.secret_managers.main import get_secret_str
from .passthrough_endpoint_router import PassthroughEndpointRouter
vertex_llm_base = VertexBase()
router = APIRouter()
default_vertex_config = None
passthrough_endpoint_router = PassthroughEndpointRouter()
def create_request_copy(request: Request):
return {
"method": request.method,
"url": str(request.url),
"headers": dict(request.headers),
"cookies": request.cookies,
"query_params": dict(request.query_params),
}
async def llm_passthrough_factory_proxy_route(
custom_llm_provider: str,
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Factory function for creating pass-through endpoints for LLM providers.
"""
from litellm.types.utils import LlmProviders
from litellm.utils import ProviderConfigManager
provider_config = ProviderConfigManager.get_provider_model_info(
provider=LlmProviders(custom_llm_provider),
model=None,
)
if provider_config is None:
raise HTTPException(
status_code=404, detail=f"Provider {custom_llm_provider} not found"
)
base_target_url = provider_config.get_api_base()
if base_target_url is None:
raise HTTPException(
status_code=404, detail=f"Provider {custom_llm_provider} api base not found"
)
encoded_endpoint = httpx.URL(endpoint).path
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
base_url = httpx.URL(base_target_url)
updated_url = base_url.copy_with(path=encoded_endpoint)
# Add or update query parameters
provider_api_key = passthrough_endpoint_router.get_credentials(
custom_llm_provider=custom_llm_provider,
region_name=None,
)
auth_headers = provider_config.validate_environment(
headers={},
model="",
messages=[],
optional_params={},
litellm_params={},
api_key=provider_api_key,
api_base=base_target_url,
)
## check for streaming
is_streaming_request = False
# anthropic is streaming when 'stream' = True is in the body
if request.method == "POST":
_request_body = await request.json()
if _request_body.get("stream"):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(updated_url),
custom_headers=auth_headers,
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
stream=is_streaming_request, # type: ignore
)
return received_value
@router.api_route(
"/gemini/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Google AI Studio Pass-through", "pass-through"],
)
async def gemini_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
):
"""
[Docs](https://docs.litellm.ai/docs/pass_through/google_ai_studio)
"""
## CHECK FOR LITELLM API KEY IN THE QUERY PARAMS - ?..key=LITELLM_API_KEY
google_ai_studio_api_key = request.query_params.get("key") or request.headers.get(
"x-goog-api-key"
)
user_api_key_dict = await user_api_key_auth(
request=request, api_key=f"Bearer {google_ai_studio_api_key}"
)
base_target_url = "https://generativelanguage.googleapis.com"
encoded_endpoint = httpx.URL(endpoint).path
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
base_url = httpx.URL(base_target_url)
updated_url = base_url.copy_with(path=encoded_endpoint)
# Add or update query parameters
gemini_api_key: Optional[str] = passthrough_endpoint_router.get_credentials(
custom_llm_provider="gemini",
region_name=None,
)
if gemini_api_key is None:
raise Exception(
"Required 'GEMINI_API_KEY' in environment to make pass-through calls to Google AI Studio."
)
# Merge query parameters, giving precedence to those in updated_url
merged_params = dict(request.query_params)
merged_params.update({"key": gemini_api_key})
## check for streaming
is_streaming_request = False
if "stream" in str(updated_url):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(updated_url),
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
query_params=merged_params, # type: ignore
stream=is_streaming_request, # type: ignore
)
return received_value
@router.api_route(
"/cohere/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Cohere Pass-through", "pass-through"],
)
async def cohere_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
[Docs](https://docs.litellm.ai/docs/pass_through/cohere)
"""
base_target_url = "https://api.cohere.com"
encoded_endpoint = httpx.URL(endpoint).path
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
base_url = httpx.URL(base_target_url)
updated_url = base_url.copy_with(path=encoded_endpoint)
# Add or update query parameters
cohere_api_key = passthrough_endpoint_router.get_credentials(
custom_llm_provider="cohere",
region_name=None,
)
## check for streaming
is_streaming_request = False
if "stream" in str(updated_url):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(updated_url),
custom_headers={"Authorization": "Bearer {}".format(cohere_api_key)},
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
stream=is_streaming_request, # type: ignore
)
return received_value
@router.api_route(
"/vllm/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["VLLM Pass-through", "pass-through"],
)
async def vllm_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
[Docs](https://docs.litellm.ai/docs/pass_through/vllm)
"""
return await llm_passthrough_factory_proxy_route(
endpoint=endpoint,
request=request,
fastapi_response=fastapi_response,
user_api_key_dict=user_api_key_dict,
custom_llm_provider="vllm",
)
@router.api_route(
"/mistral/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Mistral Pass-through", "pass-through"],
)
async def mistral_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
[Docs](https://docs.litellm.ai/docs/anthropic_completion)
"""
base_target_url = os.getenv("MISTRAL_API_BASE") or "https://api.mistral.ai"
encoded_endpoint = httpx.URL(endpoint).path
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
base_url = httpx.URL(base_target_url)
updated_url = base_url.copy_with(path=encoded_endpoint)
# Add or update query parameters
mistral_api_key = passthrough_endpoint_router.get_credentials(
custom_llm_provider="mistral",
region_name=None,
)
## check for streaming
is_streaming_request = False
# anthropic is streaming when 'stream' = True is in the body
if request.method == "POST":
_request_body = await request.json()
if _request_body.get("stream"):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(updated_url),
custom_headers={"Authorization": "Bearer {}".format(mistral_api_key)},
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
stream=is_streaming_request, # type: ignore
)
return received_value
@router.api_route(
"/anthropic/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Anthropic Pass-through", "pass-through"],
)
async def anthropic_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
[Docs](https://docs.litellm.ai/docs/anthropic_completion)
"""
base_target_url = "https://api.anthropic.com"
encoded_endpoint = httpx.URL(endpoint).path
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
base_url = httpx.URL(base_target_url)
updated_url = base_url.copy_with(path=encoded_endpoint)
# Add or update query parameters
anthropic_api_key = passthrough_endpoint_router.get_credentials(
custom_llm_provider="anthropic",
region_name=None,
)
## check for streaming
is_streaming_request = False
# anthropic is streaming when 'stream' = True is in the body
if request.method == "POST":
_request_body = await request.json()
if _request_body.get("stream"):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(updated_url),
custom_headers={"x-api-key": "{}".format(anthropic_api_key)},
_forward_headers=True,
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
stream=is_streaming_request, # type: ignore
)
return received_value
@router.api_route(
"/bedrock/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Bedrock Pass-through", "pass-through"],
)
async def bedrock_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
[Docs](https://docs.litellm.ai/docs/pass_through/bedrock)
"""
create_request_copy(request)
try:
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
aws_region_name = litellm.utils.get_secret(secret_name="AWS_REGION_NAME")
if _is_bedrock_agent_runtime_route(endpoint=endpoint): # handle bedrock agents
base_target_url = (
f"https://bedrock-agent-runtime.{aws_region_name}.amazonaws.com"
)
else:
base_target_url = f"https://bedrock-runtime.{aws_region_name}.amazonaws.com"
encoded_endpoint = httpx.URL(endpoint).path
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
base_url = httpx.URL(base_target_url)
updated_url = base_url.copy_with(path=encoded_endpoint)
# Add or update query parameters
from litellm.llms.bedrock.chat import BedrockConverseLLM
credentials: Credentials = BedrockConverseLLM().get_credentials()
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
headers = {"Content-Type": "application/json"}
# Assuming the body contains JSON data, parse it
try:
data = await request.json()
except Exception as e:
raise HTTPException(status_code=400, detail={"error": e})
_request = AWSRequest(
method="POST", url=str(updated_url), data=json.dumps(data), headers=headers
)
sigv4.add_auth(_request)
prepped = _request.prepare()
## check for streaming
is_streaming_request = False
if "stream" in str(updated_url):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(prepped.url),
custom_headers=prepped.headers, # type: ignore
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
stream=is_streaming_request, # type: ignore
custom_body=data, # type: ignore
query_params={}, # type: ignore
)
return received_value
def _is_bedrock_agent_runtime_route(endpoint: str) -> bool:
"""
Return True, if the endpoint should be routed to the `bedrock-agent-runtime` endpoint.
"""
for _route in BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES:
if _route in endpoint:
return True
return False
@router.api_route(
"/assemblyai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["AssemblyAI Pass-through", "pass-through"],
)
@router.api_route(
"/eu.assemblyai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["AssemblyAI EU Pass-through", "pass-through"],
)
async def assemblyai_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
from litellm.proxy.pass_through_endpoints.llm_provider_handlers.assembly_passthrough_logging_handler import (
AssemblyAIPassthroughLoggingHandler,
)
"""
[Docs](https://api.assemblyai.com)
"""
# Set base URL based on the route
assembly_region = AssemblyAIPassthroughLoggingHandler._get_assembly_region_from_url(
url=str(request.url)
)
base_target_url = (
AssemblyAIPassthroughLoggingHandler._get_assembly_base_url_from_region(
region=assembly_region
)
)
encoded_endpoint = httpx.URL(endpoint).path
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
base_url = httpx.URL(base_target_url)
updated_url = base_url.copy_with(path=encoded_endpoint)
# Add or update query parameters
assemblyai_api_key = passthrough_endpoint_router.get_credentials(
custom_llm_provider="assemblyai",
region_name=assembly_region,
)
## check for streaming
is_streaming_request = False
# assemblyai is streaming when 'stream' = True is in the body
if request.method == "POST":
_request_body = await request.json()
if _request_body.get("stream"):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(updated_url),
custom_headers={"Authorization": "{}".format(assemblyai_api_key)},
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request=request,
fastapi_response=fastapi_response,
user_api_key_dict=user_api_key_dict,
stream=is_streaming_request, # type: ignore
)
return received_value
@router.api_route(
"/azure/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Azure Pass-through", "pass-through"],
)
async def azure_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Call any azure endpoint using the proxy.
Just use `{PROXY_BASE_URL}/azure/{endpoint:path}`
"""
base_target_url = get_secret_str(secret_name="AZURE_API_BASE")
if base_target_url is None:
raise Exception(
"Required 'AZURE_API_BASE' in environment to make pass-through calls to Azure."
)
# Add or update query parameters
azure_api_key = passthrough_endpoint_router.get_credentials(
custom_llm_provider=litellm.LlmProviders.AZURE.value,
region_name=None,
)
if azure_api_key is None:
raise Exception(
"Required 'AZURE_API_KEY' in environment to make pass-through calls to Azure."
)
return await BaseOpenAIPassThroughHandler._base_openai_pass_through_handler(
endpoint=endpoint,
request=request,
fastapi_response=fastapi_response,
user_api_key_dict=user_api_key_dict,
base_target_url=base_target_url,
api_key=azure_api_key,
custom_llm_provider=litellm.LlmProviders.AZURE,
)
from abc import ABC, abstractmethod
class BaseVertexAIPassThroughHandler(ABC):
@staticmethod
@abstractmethod
def get_default_base_target_url(vertex_location: Optional[str]) -> str:
pass
@staticmethod
@abstractmethod
def update_base_target_url_with_credential_location(
base_target_url: str, vertex_location: Optional[str]
) -> str:
pass
class VertexAIDiscoveryPassThroughHandler(BaseVertexAIPassThroughHandler):
@staticmethod
def get_default_base_target_url(vertex_location: Optional[str]) -> str:
return "https://discoveryengine.googleapis.com/"
@staticmethod
def update_base_target_url_with_credential_location(
base_target_url: str, vertex_location: Optional[str]
) -> str:
return base_target_url
class VertexAIPassThroughHandler(BaseVertexAIPassThroughHandler):
@staticmethod
def get_default_base_target_url(vertex_location: Optional[str]) -> str:
return f"https://{vertex_location}-aiplatform.googleapis.com/"
@staticmethod
def update_base_target_url_with_credential_location(
base_target_url: str, vertex_location: Optional[str]
) -> str:
return f"https://{vertex_location}-aiplatform.googleapis.com/"
def get_vertex_pass_through_handler(
call_type: Literal["discovery", "aiplatform"]
) -> BaseVertexAIPassThroughHandler:
if call_type == "discovery":
return VertexAIDiscoveryPassThroughHandler()
elif call_type == "aiplatform":
return VertexAIPassThroughHandler()
else:
raise ValueError(f"Invalid call type: {call_type}")
async def _base_vertex_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
get_vertex_pass_through_handler: BaseVertexAIPassThroughHandler,
user_api_key_dict: Optional[UserAPIKeyAuth] = None,
):
"""
Base function for Vertex AI passthrough routes.
Handles common logic for all Vertex AI services.
Default base_target_url is `https://{vertex_location}-aiplatform.googleapis.com/`
"""
from litellm.llms.vertex_ai.common_utils import (
construct_target_url,
get_vertex_location_from_url,
get_vertex_project_id_from_url,
)
encoded_endpoint = httpx.URL(endpoint).path
verbose_proxy_logger.debug("requested endpoint %s", endpoint)
headers: dict = {}
api_key_to_use = get_litellm_virtual_key(request=request)
user_api_key_dict = await user_api_key_auth(
request=request,
api_key=api_key_to_use,
)
if user_api_key_dict is None:
api_key_to_use = get_litellm_virtual_key(request=request)
user_api_key_dict = await user_api_key_auth(
request=request,
api_key=api_key_to_use,
)
vertex_project: Optional[str] = get_vertex_project_id_from_url(endpoint)
vertex_location: Optional[str] = get_vertex_location_from_url(endpoint)
vertex_credentials = passthrough_endpoint_router.get_vertex_credentials(
project_id=vertex_project,
location=vertex_location,
)
base_target_url = get_vertex_pass_through_handler.get_default_base_target_url(
vertex_location
)
headers_passed_through = False
# Use headers from the incoming request if no vertex credentials are found
if vertex_credentials is None or vertex_credentials.vertex_project is None:
headers = dict(request.headers) or {}
headers_passed_through = True
verbose_proxy_logger.debug(
"default_vertex_config not set, incoming request headers %s", headers
)
headers.pop("content-length", None)
headers.pop("host", None)
else:
vertex_project = vertex_credentials.vertex_project
vertex_location = vertex_credentials.vertex_location
vertex_credentials_str = vertex_credentials.vertex_credentials
_auth_header, vertex_project = await vertex_llm_base._ensure_access_token_async(
credentials=vertex_credentials_str,
project_id=vertex_project,
custom_llm_provider="vertex_ai_beta",
)
auth_header, _ = vertex_llm_base._get_token_and_url(
model="",
auth_header=_auth_header,
gemini_api_key=None,
vertex_credentials=vertex_credentials_str,
vertex_project=vertex_project,
vertex_location=vertex_location,
stream=False,
custom_llm_provider="vertex_ai_beta",
api_base="",
)
headers = {
"Authorization": f"Bearer {auth_header}",
}
base_target_url = get_vertex_pass_through_handler.update_base_target_url_with_credential_location(
base_target_url, vertex_location
)
if base_target_url is None:
base_target_url = f"https://{vertex_location}-aiplatform.googleapis.com/"
request_route = encoded_endpoint
verbose_proxy_logger.debug("request_route %s", request_route)
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
updated_url = construct_target_url(
base_url=base_target_url,
requested_route=encoded_endpoint,
vertex_location=vertex_location,
vertex_project=vertex_project,
)
verbose_proxy_logger.debug("updated url %s", updated_url)
## check for streaming
target = str(updated_url)
is_streaming_request = False
if "stream" in str(updated_url):
is_streaming_request = True
target += "?alt=sse"
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=target,
custom_headers=headers,
) # dynamically construct pass-through endpoint based on incoming path
try:
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
stream=is_streaming_request, # type: ignore
)
except ProxyException as e:
if headers_passed_through:
e.message = f"No credentials found on proxy for project_name={vertex_project} + location={vertex_location}, check `/model/info` for allowed project + region combinations with `use_in_pass_through: true`. Headers were passed through directly but request failed with error: {e.message}"
raise e
return received_value
@router.api_route(
"/vertex_ai/discovery/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Vertex AI Pass-through", "pass-through"],
)
async def vertex_discovery_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
):
"""
Call any vertex discovery endpoint using the proxy.
Just use `{PROXY_BASE_URL}/vertex_ai/discovery/{endpoint:path}`
Target url: `https://discoveryengine.googleapis.com`
"""
discovery_handler = get_vertex_pass_through_handler(call_type="discovery")
return await _base_vertex_proxy_route(
endpoint=endpoint,
request=request,
fastapi_response=fastapi_response,
get_vertex_pass_through_handler=discovery_handler,
)
@router.api_route(
"/vertex-ai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Vertex AI Pass-through", "pass-through"],
include_in_schema=False,
)
@router.api_route(
"/vertex_ai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["Vertex AI Pass-through", "pass-through"],
)
async def vertex_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Call LiteLLM proxy via Vertex AI SDK.
[Docs](https://docs.litellm.ai/docs/pass_through/vertex_ai)
"""
ai_platform_handler = get_vertex_pass_through_handler(call_type="aiplatform")
return await _base_vertex_proxy_route(
endpoint=endpoint,
request=request,
fastapi_response=fastapi_response,
get_vertex_pass_through_handler=ai_platform_handler,
user_api_key_dict=user_api_key_dict,
)
@router.api_route(
"/openai/{endpoint:path}",
methods=["GET", "POST", "PUT", "DELETE", "PATCH"],
tags=["OpenAI Pass-through", "pass-through"],
)
async def openai_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Simple pass-through for OpenAI. Use this if you want to directly send a request to OpenAI.
"""
base_target_url = "https://api.openai.com/"
# Add or update query parameters
openai_api_key = passthrough_endpoint_router.get_credentials(
custom_llm_provider=litellm.LlmProviders.OPENAI.value,
region_name=None,
)
if openai_api_key is None:
raise Exception(
"Required 'OPENAI_API_KEY' in environment to make pass-through calls to OpenAI."
)
return await BaseOpenAIPassThroughHandler._base_openai_pass_through_handler(
endpoint=endpoint,
request=request,
fastapi_response=fastapi_response,
user_api_key_dict=user_api_key_dict,
base_target_url=base_target_url,
api_key=openai_api_key,
custom_llm_provider=litellm.LlmProviders.OPENAI,
)
class BaseOpenAIPassThroughHandler:
@staticmethod
async def _base_openai_pass_through_handler(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth,
base_target_url: str,
api_key: str,
custom_llm_provider: litellm.LlmProviders,
):
encoded_endpoint = httpx.URL(endpoint).path
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL by properly joining the base URL and endpoint path
base_url = httpx.URL(base_target_url)
updated_url = BaseOpenAIPassThroughHandler._join_url_paths(
base_url=base_url,
path=encoded_endpoint,
custom_llm_provider=custom_llm_provider,
)
## check for streaming
is_streaming_request = False
if "stream" in str(updated_url):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(updated_url),
custom_headers=BaseOpenAIPassThroughHandler._assemble_headers(
api_key=api_key, request=request
),
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
stream=is_streaming_request, # type: ignore
query_params=dict(request.query_params), # type: ignore
)
return received_value
@staticmethod
def _append_openai_beta_header(headers: dict, request: Request) -> dict:
"""
Appends the OpenAI-Beta header to the headers if the request is an OpenAI Assistants API request
"""
if (
RouteChecks._is_assistants_api_request(request) is True
and "OpenAI-Beta" not in headers
):
headers["OpenAI-Beta"] = "assistants=v2"
return headers
@staticmethod
def _assemble_headers(api_key: str, request: Request) -> dict:
base_headers = {
"authorization": "Bearer {}".format(api_key),
"api-key": "{}".format(api_key),
}
return BaseOpenAIPassThroughHandler._append_openai_beta_header(
headers=base_headers,
request=request,
)
@staticmethod
def _join_url_paths(
base_url: httpx.URL, path: str, custom_llm_provider: litellm.LlmProviders
) -> str:
"""
Properly joins a base URL with a path, preserving any existing path in the base URL.
"""
# Join paths correctly by removing trailing/leading slashes as needed
if not base_url.path or base_url.path == "/":
# If base URL has no path, just use the new path
joined_path_str = str(base_url.copy_with(path=path))
else:
# Otherwise, combine the paths
base_path = base_url.path.rstrip("/")
clean_path = path.lstrip("/")
full_path = f"{base_path}/{clean_path}"
joined_path_str = str(base_url.copy_with(path=full_path))
# Apply OpenAI-specific path handling for both branches
if (
custom_llm_provider == litellm.LlmProviders.OPENAI
and "/v1/" not in joined_path_str
):
# Insert v1 after api.openai.com for OpenAI requests
joined_path_str = joined_path_str.replace(
"api.openai.com/", "api.openai.com/v1/"
)
return joined_path_str
|