File size: 10,700 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# +-------------------------------------------------------------+
#
#           Add Bedrock Knowledge Base Context to your LLM calls
#
# +-------------------------------------------------------------+
#  Thank you users! We ❤️ you! - Krrish & Ishaan

import json
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple

from litellm._logging import verbose_logger, verbose_proxy_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.integrations.custom_prompt_management import CustomPromptManagement
from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
from litellm.llms.custom_httpx.http_handler import (
    get_async_httpx_client,
    httpxSpecialProvider,
)
from litellm.types.integrations.rag.bedrock_knowledgebase import (
    BedrockKBContent,
    BedrockKBGuardrailConfiguration,
    BedrockKBRequest,
    BedrockKBResponse,
    BedrockKBRetrievalConfiguration,
    BedrockKBRetrievalQuery,
    BedrockKBRetrievalResult,
)
from litellm.types.llms.openai import AllMessageValues, ChatCompletionUserMessage

if TYPE_CHECKING:
    from litellm.litellm_core_utils.litellm_logging import StandardCallbackDynamicParams
else:
    StandardCallbackDynamicParams = Any


class BedrockKnowledgeBaseHook(CustomPromptManagement, BaseAWSLLM):
    CONTENT_PREFIX_STRING = "Context: \n\n"

    def __init__(
        self,
        **kwargs,
    ):
        self.async_handler = get_async_httpx_client(
            llm_provider=httpxSpecialProvider.LoggingCallback
        )

        # store kwargs as optional_params
        self.optional_params = kwargs

        super().__init__(**kwargs)
        BaseAWSLLM.__init__(self)

    async def async_get_chat_completion_prompt(
        self,
        model: str,
        messages: List[AllMessageValues],
        non_default_params: dict,
        prompt_id: Optional[str],
        prompt_variables: Optional[dict],
        dynamic_callback_params: StandardCallbackDynamicParams,
    ) -> Tuple[str, List[AllMessageValues], dict]:
        """
        Retrieves the context from the Bedrock Knowledge Base and appends it to the messages.
        """
        vector_store_ids = non_default_params.pop("vector_store_ids", None)
        if vector_store_ids:
            for vector_store_id in vector_store_ids:
                response = await self.make_bedrock_kb_retrieve_request(
                    knowledge_base_id=vector_store_id,
                    query=self._get_kb_query_from_messages(messages),
                )
                verbose_logger.debug(f"Bedrock Knowledge Base Response: {response}")

                context_message = (
                    self.get_chat_completion_message_from_bedrock_kb_response(response)
                )
                if context_message is not None:
                    messages.append(context_message)
        return model, messages, non_default_params

    def _get_kb_query_from_messages(self, messages: List[AllMessageValues]) -> str:
        """
        Uses the text `content` field of the last message in the list of messages
        """
        if len(messages) == 0:
            return ""
        last_message = messages[-1]
        last_message_content = last_message.get("content", None)
        if last_message_content is None:
            return ""
        if isinstance(last_message_content, str):
            return last_message_content
        elif isinstance(last_message_content, list):
            return "\n".join([item.get("text", "") for item in last_message_content])
        return ""

    def _prepare_request(
        self,
        credentials: Any,
        data: BedrockKBRequest,
        optional_params: dict,
        aws_region_name: str,
        api_base: str,
        extra_headers: Optional[dict] = None,
    ) -> Any:
        """
        Prepare a signed AWS request.

        Args:
            credentials: AWS credentials
            data: Request data
            optional_params: Additional parameters
            aws_region_name: AWS region name
            api_base: Base API URL
            extra_headers: Additional headers

        Returns:
            AWSRequest: A signed AWS request
        """
        try:
            from botocore.auth import SigV4Auth
            from botocore.awsrequest import AWSRequest
        except ImportError:
            raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")

        sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)

        encoded_data = json.dumps(data).encode("utf-8")
        headers = {"Content-Type": "application/json"}
        if extra_headers is not None:
            headers = {"Content-Type": "application/json", **extra_headers}

        request = AWSRequest(
            method="POST", url=api_base, data=encoded_data, headers=headers
        )
        sigv4.add_auth(request)
        if extra_headers is not None and "Authorization" in extra_headers:
            # prevent sigv4 from overwriting the auth header
            request.headers["Authorization"] = extra_headers["Authorization"]

        return request.prepare()

    async def make_bedrock_kb_retrieve_request(
        self,
        knowledge_base_id: str,
        query: str,
        guardrail_id: Optional[str] = None,
        guardrail_version: Optional[str] = None,
        next_token: Optional[str] = None,
        retrieval_configuration: Optional[BedrockKBRetrievalConfiguration] = None,
    ) -> BedrockKBResponse:
        """
        Make a Bedrock Knowledge Base retrieve request.

        Args:
            knowledge_base_id (str): The unique identifier of the knowledge base to query
            query (str): The query text to search for
            guardrail_id (Optional[str]): The guardrail ID to apply
            guardrail_version (Optional[str]): The version of the guardrail to apply
            next_token (Optional[str]): Token for pagination
            retrieval_configuration (Optional[BedrockKBRetrievalConfiguration]): Configuration for the retrieval process

        Returns:
            BedrockKBRetrievalResponse: A typed response object containing the retrieval results
        """
        from fastapi import HTTPException

        credentials = self.get_credentials()
        aws_region_name = self._get_aws_region_name(
            optional_params=self.optional_params
        )

        # Prepare request data
        request_data: BedrockKBRequest = BedrockKBRequest(
            retrievalQuery=BedrockKBRetrievalQuery(text=query),
        )
        if next_token:
            request_data["nextToken"] = next_token
        if retrieval_configuration:
            request_data["retrievalConfiguration"] = retrieval_configuration
        if guardrail_id and guardrail_version:
            request_data["guardrailConfiguration"] = BedrockKBGuardrailConfiguration(
                guardrailId=guardrail_id, guardrailVersion=guardrail_version
            )
        verbose_logger.debug(
            f"Request Data: {json.dumps(request_data, indent=4, default=str)}"
        )

        # Prepare the request
        api_base = f"https://bedrock-agent-runtime.{aws_region_name}.amazonaws.com/knowledgebases/{knowledge_base_id}/retrieve"

        prepared_request = self._prepare_request(
            credentials=credentials,
            data=request_data,
            optional_params=self.optional_params,
            aws_region_name=aws_region_name,
            api_base=api_base,
        )

        verbose_proxy_logger.debug(
            "Bedrock Knowledge Base request body: %s, url %s, headers: %s",
            request_data,
            prepared_request.url,
            prepared_request.headers,
        )

        response = await self.async_handler.post(
            url=prepared_request.url,
            data=prepared_request.body,  # type: ignore
            headers=prepared_request.headers,  # type: ignore
        )

        verbose_proxy_logger.debug("Bedrock Knowledge Base response: %s", response.text)

        if response.status_code == 200:
            response_data = response.json()
            return BedrockKBResponse(**response_data)
        else:
            verbose_proxy_logger.error(
                "Bedrock Knowledge Base: error in response. Status code: %s, response: %s",
                response.status_code,
                response.text,
            )
            raise HTTPException(
                status_code=response.status_code,
                detail={
                    "error": "Error calling Bedrock Knowledge Base",
                    "response": response.text,
                },
            )

    @staticmethod
    def should_use_prompt_management_hook(non_default_params: Dict) -> bool:
        if non_default_params.get("vector_store_ids", None):
            return True
        return False

    @staticmethod
    def get_initialized_custom_logger(
        non_default_params: Dict,
    ) -> Optional[CustomLogger]:
        from litellm.litellm_core_utils.litellm_logging import (
            _init_custom_logger_compatible_class,
        )

        if BedrockKnowledgeBaseHook.should_use_prompt_management_hook(
            non_default_params
        ):
            return _init_custom_logger_compatible_class(
                logging_integration="bedrock_knowledgebase_hook",
                internal_usage_cache=None,
                llm_router=None,
            )
        return None

    @staticmethod
    def get_chat_completion_message_from_bedrock_kb_response(
        response: BedrockKBResponse,
    ) -> Optional[ChatCompletionUserMessage]:
        """
        Retrieves the context from the Bedrock Knowledge Base response and returns a ChatCompletionUserMessage object.
        """
        retrieval_results: Optional[List[BedrockKBRetrievalResult]] = response.get(
            "retrievalResults", None
        )
        if retrieval_results is None:
            return None

        # string to combine the context from the knowledge base
        context_string: str = BedrockKnowledgeBaseHook.CONTENT_PREFIX_STRING
        for retrieval_result in retrieval_results:
            retrieval_result_content: Optional[BedrockKBContent] = (
                retrieval_result.get("content", None) or {}
            )
            if retrieval_result_content is None:
                continue
            retrieval_result_text: Optional[str] = retrieval_result_content.get(
                "text", None
            )
            if retrieval_result_text is None:
                continue
            context_string += retrieval_result_text
        message = ChatCompletionUserMessage(
            role="user",
            content=context_string,
        )
        return message