File size: 14,297 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from typing import Any, Callable, Optional

from openai import AsyncAzureOpenAI, AzureOpenAI

from litellm.litellm_core_utils.prompt_templates.factory import prompt_factory
from litellm.utils import CustomStreamWrapper, ModelResponse, TextCompletionResponse

from ...openai.completion.transformation import OpenAITextCompletionConfig
from ..common_utils import AzureOpenAIError, BaseAzureLLM

openai_text_completion_config = OpenAITextCompletionConfig()


class AzureTextCompletion(BaseAzureLLM):
    def __init__(self) -> None:
        super().__init__()

    def validate_environment(self, api_key, azure_ad_token):
        headers = {
            "content-type": "application/json",
        }
        if api_key is not None:
            headers["api-key"] = api_key
        elif azure_ad_token is not None:
            headers["Authorization"] = f"Bearer {azure_ad_token}"
        return headers

    def completion(  # noqa: PLR0915
        self,
        model: str,
        messages: list,
        model_response: ModelResponse,
        api_key: str,
        api_base: str,
        api_version: str,
        api_type: str,
        azure_ad_token: str,
        azure_ad_token_provider: Optional[Callable],
        print_verbose: Callable,
        timeout,
        logging_obj,
        optional_params,
        litellm_params,
        logger_fn,
        acompletion: bool = False,
        headers: Optional[dict] = None,
        client=None,
    ):
        try:
            if model is None or messages is None:
                raise AzureOpenAIError(
                    status_code=422, message="Missing model or messages"
                )

            max_retries = optional_params.pop("max_retries", 2)
            prompt = prompt_factory(
                messages=messages, model=model, custom_llm_provider="azure_text"
            )

            ### CHECK IF CLOUDFLARE AI GATEWAY ###
            ### if so - set the model as part of the base url
            if "gateway.ai.cloudflare.com" in api_base:
                ## build base url - assume api base includes resource name
                client = self._init_azure_client_for_cloudflare_ai_gateway(
                    api_key=api_key,
                    api_version=api_version,
                    api_base=api_base,
                    model=model,
                    client=client,
                    max_retries=max_retries,
                    timeout=timeout,
                    azure_ad_token=azure_ad_token,
                    azure_ad_token_provider=azure_ad_token_provider,
                    acompletion=acompletion,
                    litellm_params=litellm_params,
                )

                data = {"model": None, "prompt": prompt, **optional_params}
            else:
                data = {
                    "model": model,  # type: ignore
                    "prompt": prompt,
                    **optional_params,
                }

            if acompletion is True:
                if optional_params.get("stream", False):
                    return self.async_streaming(
                        logging_obj=logging_obj,
                        api_base=api_base,
                        data=data,
                        model=model,
                        api_key=api_key,
                        api_version=api_version,
                        azure_ad_token=azure_ad_token,
                        timeout=timeout,
                        client=client,
                        litellm_params=litellm_params,
                    )
                else:
                    return self.acompletion(
                        api_base=api_base,
                        data=data,
                        model_response=model_response,
                        api_key=api_key,
                        api_version=api_version,
                        model=model,
                        azure_ad_token=azure_ad_token,
                        timeout=timeout,
                        client=client,
                        logging_obj=logging_obj,
                        max_retries=max_retries,
                        litellm_params=litellm_params,
                    )
            elif "stream" in optional_params and optional_params["stream"] is True:
                return self.streaming(
                    logging_obj=logging_obj,
                    api_base=api_base,
                    data=data,
                    model=model,
                    api_key=api_key,
                    api_version=api_version,
                    azure_ad_token=azure_ad_token,
                    timeout=timeout,
                    client=client,
                )
            else:
                ## LOGGING
                logging_obj.pre_call(
                    input=prompt,
                    api_key=api_key,
                    additional_args={
                        "headers": {
                            "api_key": api_key,
                            "azure_ad_token": azure_ad_token,
                        },
                        "api_version": api_version,
                        "api_base": api_base,
                        "complete_input_dict": data,
                    },
                )
                if not isinstance(max_retries, int):
                    raise AzureOpenAIError(
                        status_code=422, message="max retries must be an int"
                    )
                # init AzureOpenAI Client
                azure_client = self.get_azure_openai_client(
                    api_key=api_key,
                    api_base=api_base,
                    api_version=api_version,
                    client=client,
                    litellm_params=litellm_params,
                    _is_async=False,
                    model=model,
                )

                if not isinstance(azure_client, AzureOpenAI):
                    raise AzureOpenAIError(
                        status_code=500,
                        message="azure_client is not an instance of AzureOpenAI",
                    )

                raw_response = azure_client.completions.with_raw_response.create(
                    **data, timeout=timeout
                )
                response = raw_response.parse()
                stringified_response = response.model_dump()
                ## LOGGING
                logging_obj.post_call(
                    input=prompt,
                    api_key=api_key,
                    original_response=stringified_response,
                    additional_args={
                        "headers": headers,
                        "api_version": api_version,
                        "api_base": api_base,
                    },
                )
                return (
                    openai_text_completion_config.convert_to_chat_model_response_object(
                        response_object=TextCompletionResponse(**stringified_response),
                        model_response_object=model_response,
                    )
                )
        except AzureOpenAIError as e:
            raise e
        except Exception as e:
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            raise AzureOpenAIError(
                status_code=status_code, message=str(e), headers=error_headers
            )

    async def acompletion(
        self,
        api_key: str,
        api_version: str,
        model: str,
        api_base: str,
        data: dict,
        timeout: Any,
        model_response: ModelResponse,
        logging_obj: Any,
        max_retries: int,
        azure_ad_token: Optional[str] = None,
        client=None,  # this is the AsyncAzureOpenAI
        litellm_params: dict = {},
    ):
        response = None
        try:
            # init AzureOpenAI Client
            # setting Azure client
            azure_client = self.get_azure_openai_client(
                api_version=api_version,
                api_base=api_base,
                api_key=api_key,
                model=model,
                _is_async=True,
                client=client,
                litellm_params=litellm_params,
            )
            if not isinstance(azure_client, AsyncAzureOpenAI):
                raise AzureOpenAIError(
                    status_code=500,
                    message="azure_client is not an instance of AsyncAzureOpenAI",
                )

            ## LOGGING
            logging_obj.pre_call(
                input=data["prompt"],
                api_key=azure_client.api_key,
                additional_args={
                    "headers": {"Authorization": f"Bearer {azure_client.api_key}"},
                    "api_base": azure_client._base_url._uri_reference,
                    "acompletion": True,
                    "complete_input_dict": data,
                },
            )
            raw_response = await azure_client.completions.with_raw_response.create(
                **data, timeout=timeout
            )
            response = raw_response.parse()
            return openai_text_completion_config.convert_to_chat_model_response_object(
                response_object=response.model_dump(),
                model_response_object=model_response,
            )
        except AzureOpenAIError as e:
            raise e
        except Exception as e:
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            raise AzureOpenAIError(
                status_code=status_code, message=str(e), headers=error_headers
            )

    def streaming(
        self,
        logging_obj,
        api_base: str,
        api_key: str,
        api_version: str,
        data: dict,
        model: str,
        timeout: Any,
        azure_ad_token: Optional[str] = None,
        client=None,
        litellm_params: dict = {},
    ):
        max_retries = data.pop("max_retries", 2)
        if not isinstance(max_retries, int):
            raise AzureOpenAIError(
                status_code=422, message="max retries must be an int"
            )
        # init AzureOpenAI Client
        azure_client = self.get_azure_openai_client(
            api_version=api_version,
            api_base=api_base,
            api_key=api_key,
            model=model,
            _is_async=False,
            client=client,
            litellm_params=litellm_params,
        )
        if not isinstance(azure_client, AzureOpenAI):
            raise AzureOpenAIError(
                status_code=500,
                message="azure_client is not an instance of AzureOpenAI",
            )

        ## LOGGING
        logging_obj.pre_call(
            input=data["prompt"],
            api_key=azure_client.api_key,
            additional_args={
                "headers": {"Authorization": f"Bearer {azure_client.api_key}"},
                "api_base": azure_client._base_url._uri_reference,
                "acompletion": True,
                "complete_input_dict": data,
            },
        )
        raw_response = azure_client.completions.with_raw_response.create(
            **data, timeout=timeout
        )
        response = raw_response.parse()
        streamwrapper = CustomStreamWrapper(
            completion_stream=response,
            model=model,
            custom_llm_provider="azure_text",
            logging_obj=logging_obj,
        )
        return streamwrapper

    async def async_streaming(
        self,
        logging_obj,
        api_base: str,
        api_key: str,
        api_version: str,
        data: dict,
        model: str,
        timeout: Any,
        azure_ad_token: Optional[str] = None,
        client=None,
        litellm_params: dict = {},
    ):
        try:
            # init AzureOpenAI Client
            azure_client = self.get_azure_openai_client(
                api_version=api_version,
                api_base=api_base,
                api_key=api_key,
                model=model,
                _is_async=True,
                client=client,
                litellm_params=litellm_params,
            )
            if not isinstance(azure_client, AsyncAzureOpenAI):
                raise AzureOpenAIError(
                    status_code=500,
                    message="azure_client is not an instance of AsyncAzureOpenAI",
                )
            ## LOGGING
            logging_obj.pre_call(
                input=data["prompt"],
                api_key=azure_client.api_key,
                additional_args={
                    "headers": {"Authorization": f"Bearer {azure_client.api_key}"},
                    "api_base": azure_client._base_url._uri_reference,
                    "acompletion": True,
                    "complete_input_dict": data,
                },
            )
            raw_response = await azure_client.completions.with_raw_response.create(
                **data, timeout=timeout
            )
            response = raw_response.parse()
            # return response
            streamwrapper = CustomStreamWrapper(
                completion_stream=response,
                model=model,
                custom_llm_provider="azure_text",
                logging_obj=logging_obj,
            )
            return streamwrapper  ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails
        except Exception as e:
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            raise AzureOpenAIError(
                status_code=status_code, message=str(e), headers=error_headers
            )