Spaces:
Sleeping
Sleeping
File size: 14,297 Bytes
469eae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
from typing import Any, Callable, Optional
from openai import AsyncAzureOpenAI, AzureOpenAI
from litellm.litellm_core_utils.prompt_templates.factory import prompt_factory
from litellm.utils import CustomStreamWrapper, ModelResponse, TextCompletionResponse
from ...openai.completion.transformation import OpenAITextCompletionConfig
from ..common_utils import AzureOpenAIError, BaseAzureLLM
openai_text_completion_config = OpenAITextCompletionConfig()
class AzureTextCompletion(BaseAzureLLM):
def __init__(self) -> None:
super().__init__()
def validate_environment(self, api_key, azure_ad_token):
headers = {
"content-type": "application/json",
}
if api_key is not None:
headers["api-key"] = api_key
elif azure_ad_token is not None:
headers["Authorization"] = f"Bearer {azure_ad_token}"
return headers
def completion( # noqa: PLR0915
self,
model: str,
messages: list,
model_response: ModelResponse,
api_key: str,
api_base: str,
api_version: str,
api_type: str,
azure_ad_token: str,
azure_ad_token_provider: Optional[Callable],
print_verbose: Callable,
timeout,
logging_obj,
optional_params,
litellm_params,
logger_fn,
acompletion: bool = False,
headers: Optional[dict] = None,
client=None,
):
try:
if model is None or messages is None:
raise AzureOpenAIError(
status_code=422, message="Missing model or messages"
)
max_retries = optional_params.pop("max_retries", 2)
prompt = prompt_factory(
messages=messages, model=model, custom_llm_provider="azure_text"
)
### CHECK IF CLOUDFLARE AI GATEWAY ###
### if so - set the model as part of the base url
if "gateway.ai.cloudflare.com" in api_base:
## build base url - assume api base includes resource name
client = self._init_azure_client_for_cloudflare_ai_gateway(
api_key=api_key,
api_version=api_version,
api_base=api_base,
model=model,
client=client,
max_retries=max_retries,
timeout=timeout,
azure_ad_token=azure_ad_token,
azure_ad_token_provider=azure_ad_token_provider,
acompletion=acompletion,
litellm_params=litellm_params,
)
data = {"model": None, "prompt": prompt, **optional_params}
else:
data = {
"model": model, # type: ignore
"prompt": prompt,
**optional_params,
}
if acompletion is True:
if optional_params.get("stream", False):
return self.async_streaming(
logging_obj=logging_obj,
api_base=api_base,
data=data,
model=model,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
litellm_params=litellm_params,
)
else:
return self.acompletion(
api_base=api_base,
data=data,
model_response=model_response,
api_key=api_key,
api_version=api_version,
model=model,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
logging_obj=logging_obj,
max_retries=max_retries,
litellm_params=litellm_params,
)
elif "stream" in optional_params and optional_params["stream"] is True:
return self.streaming(
logging_obj=logging_obj,
api_base=api_base,
data=data,
model=model,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
)
else:
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={
"headers": {
"api_key": api_key,
"azure_ad_token": azure_ad_token,
},
"api_version": api_version,
"api_base": api_base,
"complete_input_dict": data,
},
)
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client = self.get_azure_openai_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
client=client,
litellm_params=litellm_params,
_is_async=False,
model=model,
)
if not isinstance(azure_client, AzureOpenAI):
raise AzureOpenAIError(
status_code=500,
message="azure_client is not an instance of AzureOpenAI",
)
raw_response = azure_client.completions.with_raw_response.create(
**data, timeout=timeout
)
response = raw_response.parse()
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=stringified_response,
additional_args={
"headers": headers,
"api_version": api_version,
"api_base": api_base,
},
)
return (
openai_text_completion_config.convert_to_chat_model_response_object(
response_object=TextCompletionResponse(**stringified_response),
model_response_object=model_response,
)
)
except AzureOpenAIError as e:
raise e
except Exception as e:
status_code = getattr(e, "status_code", 500)
error_headers = getattr(e, "headers", None)
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise AzureOpenAIError(
status_code=status_code, message=str(e), headers=error_headers
)
async def acompletion(
self,
api_key: str,
api_version: str,
model: str,
api_base: str,
data: dict,
timeout: Any,
model_response: ModelResponse,
logging_obj: Any,
max_retries: int,
azure_ad_token: Optional[str] = None,
client=None, # this is the AsyncAzureOpenAI
litellm_params: dict = {},
):
response = None
try:
# init AzureOpenAI Client
# setting Azure client
azure_client = self.get_azure_openai_client(
api_version=api_version,
api_base=api_base,
api_key=api_key,
model=model,
_is_async=True,
client=client,
litellm_params=litellm_params,
)
if not isinstance(azure_client, AsyncAzureOpenAI):
raise AzureOpenAIError(
status_code=500,
message="azure_client is not an instance of AsyncAzureOpenAI",
)
## LOGGING
logging_obj.pre_call(
input=data["prompt"],
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
raw_response = await azure_client.completions.with_raw_response.create(
**data, timeout=timeout
)
response = raw_response.parse()
return openai_text_completion_config.convert_to_chat_model_response_object(
response_object=response.model_dump(),
model_response_object=model_response,
)
except AzureOpenAIError as e:
raise e
except Exception as e:
status_code = getattr(e, "status_code", 500)
error_headers = getattr(e, "headers", None)
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise AzureOpenAIError(
status_code=status_code, message=str(e), headers=error_headers
)
def streaming(
self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str] = None,
client=None,
litellm_params: dict = {},
):
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client = self.get_azure_openai_client(
api_version=api_version,
api_base=api_base,
api_key=api_key,
model=model,
_is_async=False,
client=client,
litellm_params=litellm_params,
)
if not isinstance(azure_client, AzureOpenAI):
raise AzureOpenAIError(
status_code=500,
message="azure_client is not an instance of AzureOpenAI",
)
## LOGGING
logging_obj.pre_call(
input=data["prompt"],
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
raw_response = azure_client.completions.with_raw_response.create(
**data, timeout=timeout
)
response = raw_response.parse()
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="azure_text",
logging_obj=logging_obj,
)
return streamwrapper
async def async_streaming(
self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str] = None,
client=None,
litellm_params: dict = {},
):
try:
# init AzureOpenAI Client
azure_client = self.get_azure_openai_client(
api_version=api_version,
api_base=api_base,
api_key=api_key,
model=model,
_is_async=True,
client=client,
litellm_params=litellm_params,
)
if not isinstance(azure_client, AsyncAzureOpenAI):
raise AzureOpenAIError(
status_code=500,
message="azure_client is not an instance of AsyncAzureOpenAI",
)
## LOGGING
logging_obj.pre_call(
input=data["prompt"],
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
raw_response = await azure_client.completions.with_raw_response.create(
**data, timeout=timeout
)
response = raw_response.parse()
# return response
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="azure_text",
logging_obj=logging_obj,
)
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails
except Exception as e:
status_code = getattr(e, "status_code", 500)
error_headers = getattr(e, "headers", None)
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise AzureOpenAIError(
status_code=status_code, message=str(e), headers=error_headers
)
|