File size: 19,778 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
"""
Support for gpt model family 
"""

from typing import (
    TYPE_CHECKING,
    Any,
    AsyncIterator,
    Iterator,
    List,
    Optional,
    Union,
    cast,
)

import httpx

import litellm
from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import (
    _extract_reasoning_content,
    _handle_invalid_parallel_tool_calls,
    _should_convert_tool_call_to_json_mode,
)
from litellm.litellm_core_utils.prompt_templates.common_utils import get_tool_call_names
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import (
    AllMessageValues,
    ChatCompletionFileObject,
    ChatCompletionFileObjectFile,
    ChatCompletionImageObject,
    ChatCompletionImageUrlObject,
    OpenAIChatCompletionChoices,
)
from litellm.types.utils import (
    ChatCompletionMessageToolCall,
    Choices,
    Function,
    Message,
    ModelResponse,
    ModelResponseStream,
)
from litellm.utils import convert_to_model_response_object

from ..common_utils import OpenAIError

if TYPE_CHECKING:
    from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj

    LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
    LiteLLMLoggingObj = Any


class OpenAIGPTConfig(BaseLLMModelInfo, BaseConfig):
    """
    Reference: https://platform.openai.com/docs/api-reference/chat/create

    The class `OpenAIConfig` provides configuration for the OpenAI's Chat API interface. Below are the parameters:

    - `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.

    - `function_call` (string or object): This optional parameter controls how the model calls functions.

    - `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.

    - `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.

    - `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.

    - `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.

    - `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.

    - `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.

    - `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.

    - `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
    """

    frequency_penalty: Optional[int] = None
    function_call: Optional[Union[str, dict]] = None
    functions: Optional[list] = None
    logit_bias: Optional[dict] = None
    max_tokens: Optional[int] = None
    n: Optional[int] = None
    presence_penalty: Optional[int] = None
    stop: Optional[Union[str, list]] = None
    temperature: Optional[int] = None
    top_p: Optional[int] = None
    response_format: Optional[dict] = None

    def __init__(
        self,
        frequency_penalty: Optional[int] = None,
        function_call: Optional[Union[str, dict]] = None,
        functions: Optional[list] = None,
        logit_bias: Optional[dict] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[int] = None,
        stop: Optional[Union[str, list]] = None,
        temperature: Optional[int] = None,
        top_p: Optional[int] = None,
        response_format: Optional[dict] = None,
    ) -> None:
        locals_ = locals().copy()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return super().get_config()

    def get_supported_openai_params(self, model: str) -> list:
        base_params = [
            "frequency_penalty",
            "logit_bias",
            "logprobs",
            "top_logprobs",
            "max_tokens",
            "max_completion_tokens",
            "modalities",
            "prediction",
            "n",
            "presence_penalty",
            "seed",
            "stop",
            "stream",
            "stream_options",
            "temperature",
            "top_p",
            "tools",
            "tool_choice",
            "function_call",
            "functions",
            "max_retries",
            "extra_headers",
            "parallel_tool_calls",
            "audio",
        ]  # works across all models

        model_specific_params = []
        if (
            model != "gpt-3.5-turbo-16k" and model != "gpt-4"
        ):  # gpt-4 does not support 'response_format'
            model_specific_params.append("response_format")

        if (
            model in litellm.open_ai_chat_completion_models
        ) or model in litellm.open_ai_text_completion_models:
            model_specific_params.append(
                "user"
            )  # user is not a param supported by all openai-compatible endpoints - e.g. azure ai
        return base_params + model_specific_params

    def _map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
    ) -> dict:
        """
        If any supported_openai_params are in non_default_params, add them to optional_params, so they are use in API call

        Args:
            non_default_params (dict): Non-default parameters to filter.
            optional_params (dict): Optional parameters to update.
            model (str): Model name for parameter support check.

        Returns:
            dict: Updated optional_params with supported non-default parameters.
        """
        supported_openai_params = self.get_supported_openai_params(model)
        for param, value in non_default_params.items():
            if param in supported_openai_params:
                optional_params[param] = value
        return optional_params

    def map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
    ) -> dict:
        return self._map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=drop_params,
        )

    def _transform_messages(
        self, messages: List[AllMessageValues], model: str
    ) -> List[AllMessageValues]:
        """OpenAI no longer supports image_url as a string, so we need to convert it to a dict"""
        for message in messages:
            message_content = message.get("content")
            if message_content and isinstance(message_content, list):
                for content_item in message_content:
                    litellm_specific_params = {"format"}
                    if content_item.get("type") == "image_url":
                        content_item = cast(ChatCompletionImageObject, content_item)
                        if isinstance(content_item["image_url"], str):
                            content_item["image_url"] = {
                                "url": content_item["image_url"],
                            }
                        elif isinstance(content_item["image_url"], dict):
                            new_image_url_obj = ChatCompletionImageUrlObject(
                                **{  # type: ignore
                                    k: v
                                    for k, v in content_item["image_url"].items()
                                    if k not in litellm_specific_params
                                }
                            )
                            content_item["image_url"] = new_image_url_obj
                    elif content_item.get("type") == "file":
                        content_item = cast(ChatCompletionFileObject, content_item)
                        file_obj = content_item["file"]
                        new_file_obj = ChatCompletionFileObjectFile(
                            **{  # type: ignore
                                k: v
                                for k, v in file_obj.items()
                                if k not in litellm_specific_params
                            }
                        )
                        content_item["file"] = new_file_obj
        return messages

    def transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        headers: dict,
    ) -> dict:
        """
        Transform the overall request to be sent to the API.

        Returns:
            dict: The transformed request. Sent as the body of the API call.
        """
        messages = self._transform_messages(messages=messages, model=model)
        return {
            "model": model,
            "messages": messages,
            **optional_params,
        }

    def _passed_in_tools(self, optional_params: dict) -> bool:
        return optional_params.get("tools", None) is not None

    def _check_and_fix_if_content_is_tool_call(
        self, content: str, optional_params: dict
    ) -> Optional[ChatCompletionMessageToolCall]:
        """
        Check if the content is a tool call
        """
        import json

        if not self._passed_in_tools(optional_params):
            return None
        tool_call_names = get_tool_call_names(optional_params.get("tools", []))
        try:
            json_content = json.loads(content)
            if (
                json_content.get("type") == "function"
                and json_content.get("name") in tool_call_names
            ):
                return ChatCompletionMessageToolCall(
                    function=Function(
                        name=json_content.get("name"),
                        arguments=json_content.get("arguments"),
                    )
                )
        except Exception:
            return None

        return None

    def _get_finish_reason(self, message: Message, received_finish_reason: str) -> str:
        if message.tool_calls is not None:
            return "tool_calls"
        else:
            return received_finish_reason

    def _transform_choices(
        self,
        choices: List[OpenAIChatCompletionChoices],
        json_mode: Optional[bool] = None,
        optional_params: Optional[dict] = None,
    ) -> List[Choices]:
        transformed_choices = []

        for choice in choices:
            ## HANDLE JSON MODE - anthropic returns single function call]
            tool_calls = choice["message"].get("tool_calls", None)
            new_tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None
            message_content = choice["message"].get("content", None)
            if tool_calls is not None:
                _openai_tool_calls = []
                for _tc in tool_calls:
                    _openai_tc = ChatCompletionMessageToolCall(**_tc)  # type: ignore
                    _openai_tool_calls.append(_openai_tc)
                fixed_tool_calls = _handle_invalid_parallel_tool_calls(
                    _openai_tool_calls
                )

                if fixed_tool_calls is not None:
                    new_tool_calls = fixed_tool_calls
            elif (
                optional_params is not None
                and message_content
                and isinstance(message_content, str)
            ):
                new_tool_call = self._check_and_fix_if_content_is_tool_call(
                    message_content, optional_params
                )
                if new_tool_call is not None:
                    choice["message"]["content"] = None  # remove the content
                    new_tool_calls = [new_tool_call]

            translated_message: Optional[Message] = None
            finish_reason: Optional[str] = None
            if new_tool_calls and _should_convert_tool_call_to_json_mode(
                tool_calls=new_tool_calls,
                convert_tool_call_to_json_mode=json_mode,
            ):
                # to support response_format on claude models
                json_mode_content_str: Optional[str] = (
                    str(new_tool_calls[0]["function"].get("arguments", "")) or None
                )
                if json_mode_content_str is not None:
                    translated_message = Message(content=json_mode_content_str)
                    finish_reason = "stop"

            if translated_message is None:
                ## get the reasoning content
                (
                    reasoning_content,
                    content_str,
                ) = _extract_reasoning_content(cast(dict, choice["message"]))

                translated_message = Message(
                    role="assistant",
                    content=content_str,
                    reasoning_content=reasoning_content,
                    thinking_blocks=None,
                    tool_calls=new_tool_calls,
                )

            if finish_reason is None:
                finish_reason = choice["finish_reason"]

            translated_choice = Choices(
                finish_reason=finish_reason,
                index=choice["index"],
                message=translated_message,
                logprobs=None,
                enhancements=None,
            )

            translated_choice.finish_reason = self._get_finish_reason(
                translated_message, choice["finish_reason"]
            )
            transformed_choices.append(translated_choice)

        return transformed_choices

    def transform_response(
        self,
        model: str,
        raw_response: httpx.Response,
        model_response: ModelResponse,
        logging_obj: LiteLLMLoggingObj,
        request_data: dict,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        encoding: Any,
        api_key: Optional[str] = None,
        json_mode: Optional[bool] = None,
    ) -> ModelResponse:
        """
        Transform the response from the API.

        Returns:
            dict: The transformed response.
        """

        ## LOGGING
        logging_obj.post_call(
            input=messages,
            api_key=api_key,
            original_response=raw_response.text,
            additional_args={"complete_input_dict": request_data},
        )

        ## RESPONSE OBJECT
        try:
            completion_response = raw_response.json()
        except Exception as e:
            response_headers = getattr(raw_response, "headers", None)
            raise OpenAIError(
                message="Unable to get json response - {}, Original Response: {}".format(
                    str(e), raw_response.text
                ),
                status_code=raw_response.status_code,
                headers=response_headers,
            )
        raw_response_headers = dict(raw_response.headers)
        final_response_obj = convert_to_model_response_object(
            response_object=completion_response,
            model_response_object=model_response,
            hidden_params={"headers": raw_response_headers},
            _response_headers=raw_response_headers,
        )

        return cast(ModelResponse, final_response_obj)

    def get_error_class(
        self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
    ) -> BaseLLMException:
        return OpenAIError(
            status_code=status_code,
            message=error_message,
            headers=cast(httpx.Headers, headers),
        )

    def get_complete_url(
        self,
        api_base: Optional[str],
        api_key: Optional[str],
        model: str,
        optional_params: dict,
        litellm_params: dict,
        stream: Optional[bool] = None,
    ) -> str:
        """
        Get the complete URL for the API call.

        Returns:
            str: The complete URL for the API call.
        """
        if api_base is None:
            api_base = "https://api.openai.com"
        endpoint = "chat/completions"

        # Remove trailing slash from api_base if present
        api_base = api_base.rstrip("/")

        # Check if endpoint is already in the api_base
        if endpoint in api_base:
            return api_base

        return f"{api_base}/{endpoint}"

    def validate_environment(
        self,
        headers: dict,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
    ) -> dict:
        if api_key is not None:
            headers["Authorization"] = f"Bearer {api_key}"

        # Ensure Content-Type is set to application/json
        if "content-type" not in headers and "Content-Type" not in headers:
            headers["Content-Type"] = "application/json"

        return headers

    def get_models(
        self, api_key: Optional[str] = None, api_base: Optional[str] = None
    ) -> List[str]:
        """
        Calls OpenAI's `/v1/models` endpoint and returns the list of models.
        """

        if api_base is None:
            api_base = "https://api.openai.com"
        if api_key is None:
            api_key = get_secret_str("OPENAI_API_KEY")

        response = litellm.module_level_client.get(
            url=f"{api_base}/v1/models",
            headers={"Authorization": f"Bearer {api_key}"},
        )

        if response.status_code != 200:
            raise Exception(f"Failed to get models: {response.text}")

        models = response.json()["data"]
        return [model["id"] for model in models]

    @staticmethod
    def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
        return (
            api_key
            or litellm.api_key
            or litellm.openai_key
            or get_secret_str("OPENAI_API_KEY")
        )

    @staticmethod
    def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
        return (
            api_base
            or litellm.api_base
            or get_secret_str("OPENAI_BASE_URL")
            or get_secret_str("OPENAI_API_BASE")
            or "https://api.openai.com/v1"
        )

    @staticmethod
    def get_base_model(model: Optional[str] = None) -> Optional[str]:
        return model

    def get_model_response_iterator(
        self,
        streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
        sync_stream: bool,
        json_mode: Optional[bool] = False,
    ) -> Any:
        return OpenAIChatCompletionStreamingHandler(
            streaming_response=streaming_response,
            sync_stream=sync_stream,
            json_mode=json_mode,
        )


class OpenAIChatCompletionStreamingHandler(BaseModelResponseIterator):
    def chunk_parser(self, chunk: dict) -> ModelResponseStream:
        try:
            return ModelResponseStream(
                id=chunk["id"],
                object="chat.completion.chunk",
                created=chunk["created"],
                model=chunk["model"],
                choices=chunk["choices"],
            )
        except Exception as e:
            raise e