File size: 9,441 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Unified /v1/messages endpoint - (Anthropic Spec)
"""

import asyncio
import json
import time
import traceback

from fastapi import APIRouter, Depends, HTTPException, Request, Response, status
from fastapi.responses import StreamingResponse

import litellm
from litellm._logging import verbose_proxy_logger
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
from litellm.proxy.utils import ProxyLogging

router = APIRouter()


async def async_data_generator_anthropic(
    response,
    user_api_key_dict: UserAPIKeyAuth,
    request_data: dict,
    proxy_logging_obj: ProxyLogging,
):
    verbose_proxy_logger.debug("inside generator")
    try:
        time.time()
        async for chunk in response:
            verbose_proxy_logger.debug(
                "async_data_generator: received streaming chunk - {}".format(chunk)
            )
            ### CALL HOOKS ### - modify outgoing data
            chunk = await proxy_logging_obj.async_post_call_streaming_hook(
                user_api_key_dict=user_api_key_dict, response=chunk
            )

            yield chunk
    except Exception as e:
        verbose_proxy_logger.exception(
            "litellm.proxy.proxy_server.async_data_generator(): Exception occured - {}".format(
                str(e)
            )
        )
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict,
            original_exception=e,
            request_data=request_data,
        )
        verbose_proxy_logger.debug(
            f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`"
        )

        if isinstance(e, HTTPException):
            raise e
        else:
            error_traceback = traceback.format_exc()
            error_msg = f"{str(e)}\n\n{error_traceback}"

        proxy_exception = ProxyException(
            message=getattr(e, "message", error_msg),
            type=getattr(e, "type", "None"),
            param=getattr(e, "param", "None"),
            code=getattr(e, "status_code", 500),
        )
        error_returned = json.dumps({"error": proxy_exception.to_dict()})
        yield f"data: {error_returned}\n\n"


@router.post(
    "/v1/messages",
    tags=["[beta] Anthropic `/v1/messages`"],
    dependencies=[Depends(user_api_key_auth)],
    include_in_schema=False,
)
async def anthropic_response(  # noqa: PLR0915
    fastapi_response: Response,
    request: Request,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Use `{PROXY_BASE_URL}/anthropic/v1/messages` instead - [Docs](https://docs.litellm.ai/docs/anthropic_completion).

    This was a BETA endpoint that calls 100+ LLMs in the anthropic format.
    """
    from litellm.proxy.proxy_server import (
        general_settings,
        llm_router,
        proxy_config,
        proxy_logging_obj,
        user_api_base,
        user_max_tokens,
        user_model,
        user_request_timeout,
        user_temperature,
        version,
    )

    request_data = await _read_request_body(request=request)
    data: dict = {**request_data}
    try:
        data["model"] = (
            general_settings.get("completion_model", None)  # server default
            or user_model  # model name passed via cli args
            or data.get("model", None)  # default passed in http request
        )
        if user_model:
            data["model"] = user_model

        data = await add_litellm_data_to_request(
            data=data,  # type: ignore
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_config=proxy_config,
        )

        # override with user settings, these are params passed via cli
        if user_temperature:
            data["temperature"] = user_temperature
        if user_request_timeout:
            data["request_timeout"] = user_request_timeout
        if user_max_tokens:
            data["max_tokens"] = user_max_tokens
        if user_api_base:
            data["api_base"] = user_api_base

        ### MODEL ALIAS MAPPING ###
        # check if model name in model alias map
        # get the actual model name
        if data["model"] in litellm.model_alias_map:
            data["model"] = litellm.model_alias_map[data["model"]]

        ### CALL HOOKS ### - modify incoming data before calling the model
        data = await proxy_logging_obj.pre_call_hook(  # type: ignore
            user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion"
        )

        ### ROUTE THE REQUESTs ###
        router_model_names = llm_router.model_names if llm_router is not None else []

        # skip router if user passed their key
        if (
            llm_router is not None and data["model"] in router_model_names
        ):  # model in router model list
            llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
        elif (
            llm_router is not None
            and llm_router.model_group_alias is not None
            and data["model"] in llm_router.model_group_alias
        ):  # model set in model_group_alias
            llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
        elif (
            llm_router is not None and data["model"] in llm_router.deployment_names
        ):  # model in router deployments, calling a specific deployment on the router
            llm_response = asyncio.create_task(
                llm_router.aanthropic_messages(**data, specific_deployment=True)
            )
        elif (
            llm_router is not None and data["model"] in llm_router.get_model_ids()
        ):  # model in router model list
            llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
        elif (
            llm_router is not None
            and data["model"] not in router_model_names
            and (
                llm_router.default_deployment is not None
                or len(llm_router.pattern_router.patterns) > 0
            )
        ):  # model in router deployments, calling a specific deployment on the router
            llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
        elif user_model is not None:  # `litellm --model <your-model-name>`
            llm_response = asyncio.create_task(litellm.anthropic_messages(**data))
        else:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail={
                    "error": "completion: Invalid model name passed in model="
                    + data.get("model", "")
                },
            )

        # Await the llm_response task
        response = await llm_response

        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""
        response_cost = hidden_params.get("response_cost", None) or ""

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        verbose_proxy_logger.debug("final response: %s", response)

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                response_cost=response_cost,
                request_data=data,
                hidden_params=hidden_params,
            )
        )

        if (
            "stream" in data and data["stream"] is True
        ):  # use generate_responses to stream responses
            selected_data_generator = async_data_generator_anthropic(
                response=response,
                user_api_key_dict=user_api_key_dict,
                request_data=data,
                proxy_logging_obj=proxy_logging_obj,
            )

            return StreamingResponse(
                selected_data_generator,  # type: ignore
                media_type="text/event-stream",
            )

        verbose_proxy_logger.info("\nResponse from Litellm:\n{}".format(response))
        return response
    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.exception(
            "litellm.proxy.proxy_server.anthropic_response(): Exception occured - {}".format(
                str(e)
            )
        )
        error_msg = f"{str(e)}"
        raise ProxyException(
            message=getattr(e, "message", error_msg),
            type=getattr(e, "type", "None"),
            param=getattr(e, "param", "None"),
            code=getattr(e, "status_code", 500),
        )