File size: 15,498 Bytes
469eae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# What is this?
## This hook is used to check for LiteLLM managed files in the request body, and replace them with model-specific file id

import base64
import json
import uuid
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Union, cast

from litellm import Router, verbose_logger
from litellm.caching.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.prompt_templates.common_utils import extract_file_data
from litellm.proxy._types import CallTypes, LiteLLM_ManagedFileTable, UserAPIKeyAuth
from litellm.types.llms.openai import (
    AllMessageValues,
    ChatCompletionFileObject,
    CreateFileRequest,
    OpenAIFileObject,
    OpenAIFilesPurpose,
)
from litellm.types.utils import SpecialEnums

if TYPE_CHECKING:
    from opentelemetry.trace import Span as _Span

    from litellm.proxy.utils import InternalUsageCache as _InternalUsageCache
    from litellm.proxy.utils import PrismaClient as _PrismaClient

    Span = Union[_Span, Any]
    InternalUsageCache = _InternalUsageCache
    PrismaClient = _PrismaClient
else:
    Span = Any
    InternalUsageCache = Any
    PrismaClient = Any


class BaseFileEndpoints(ABC):
    @abstractmethod
    async def afile_retrieve(
        self,
        file_id: str,
        litellm_parent_otel_span: Optional[Span],
    ) -> OpenAIFileObject:
        pass

    @abstractmethod
    async def afile_list(
        self, custom_llm_provider: str, **data: dict
    ) -> List[OpenAIFileObject]:
        pass

    @abstractmethod
    async def afile_delete(
        self, custom_llm_provider: str, file_id: str, **data: dict
    ) -> OpenAIFileObject:
        pass


class _PROXY_LiteLLMManagedFiles(CustomLogger):
    # Class variables or attributes
    def __init__(
        self, internal_usage_cache: InternalUsageCache, prisma_client: PrismaClient
    ):
        self.internal_usage_cache = internal_usage_cache
        self.prisma_client = prisma_client

    async def store_unified_file_id(
        self,
        file_id: str,
        file_object: OpenAIFileObject,
        litellm_parent_otel_span: Optional[Span],
        model_mappings: Dict[str, str],
    ) -> None:
        verbose_logger.info(
            f"Storing LiteLLM Managed File object with id={file_id} in cache"
        )
        litellm_managed_file_object = LiteLLM_ManagedFileTable(
            unified_file_id=file_id,
            file_object=file_object,
            model_mappings=model_mappings,
        )
        await self.internal_usage_cache.async_set_cache(
            key=file_id,
            value=litellm_managed_file_object.model_dump(),
            litellm_parent_otel_span=litellm_parent_otel_span,
        )

        await self.prisma_client.db.litellm_managedfiletable.create(
            data={
                "unified_file_id": file_id,
                "file_object": file_object.model_dump_json(),
                "model_mappings": json.dumps(model_mappings),
            }
        )

    async def get_unified_file_id(
        self, file_id: str, litellm_parent_otel_span: Optional[Span] = None
    ) -> Optional[LiteLLM_ManagedFileTable]:
        ## CHECK CACHE
        result = cast(
            Optional[dict],
            await self.internal_usage_cache.async_get_cache(
                key=file_id,
                litellm_parent_otel_span=litellm_parent_otel_span,
            ),
        )

        if result:
            return LiteLLM_ManagedFileTable(**result)

        ## CHECK DB
        db_object = await self.prisma_client.db.litellm_managedfiletable.find_first(
            where={"unified_file_id": file_id}
        )

        if db_object:
            return LiteLLM_ManagedFileTable(**db_object.model_dump())
        return None

    async def delete_unified_file_id(
        self, file_id: str, litellm_parent_otel_span: Optional[Span] = None
    ) -> OpenAIFileObject:
        ## get old value
        initial_value = await self.prisma_client.db.litellm_managedfiletable.find_first(
            where={"unified_file_id": file_id}
        )
        if initial_value is None:
            raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
        ## delete old value
        await self.internal_usage_cache.async_set_cache(
            key=file_id,
            value=None,
            litellm_parent_otel_span=litellm_parent_otel_span,
        )
        await self.prisma_client.db.litellm_managedfiletable.delete(
            where={"unified_file_id": file_id}
        )
        return initial_value.file_object

    async def async_pre_call_hook(
        self,
        user_api_key_dict: UserAPIKeyAuth,
        cache: DualCache,
        data: Dict,
        call_type: Literal[
            "completion",
            "text_completion",
            "embeddings",
            "image_generation",
            "moderation",
            "audio_transcription",
            "pass_through_endpoint",
            "rerank",
        ],
    ) -> Union[Exception, str, Dict, None]:
        """
        - Detect litellm_proxy/ file_id
        - add dictionary of mappings of litellm_proxy/ file_id -> provider_file_id => {litellm_proxy/file_id: {"model_id": id, "file_id": provider_file_id}}
        """
        if call_type == CallTypes.completion.value:
            messages = data.get("messages")
            if messages:
                file_ids = self.get_file_ids_from_messages(messages)
                if file_ids:
                    model_file_id_mapping = await self.get_model_file_id_mapping(
                        file_ids, user_api_key_dict.parent_otel_span
                    )

                    data["model_file_id_mapping"] = model_file_id_mapping

        return data

    def get_file_ids_from_messages(self, messages: List[AllMessageValues]) -> List[str]:
        """
        Gets file ids from messages
        """
        file_ids = []
        for message in messages:
            if message.get("role") == "user":
                content = message.get("content")
                if content:
                    if isinstance(content, str):
                        continue
                    for c in content:
                        if c["type"] == "file":
                            file_object = cast(ChatCompletionFileObject, c)
                            file_object_file_field = file_object["file"]
                            file_id = file_object_file_field.get("file_id")
                            if file_id:
                                file_ids.append(file_id)
        return file_ids

    @staticmethod
    def _convert_b64_uid_to_unified_uid(b64_uid: str) -> str:
        is_base64_unified_file_id = (
            _PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(b64_uid)
        )
        if is_base64_unified_file_id:
            return is_base64_unified_file_id
        else:
            return b64_uid

    @staticmethod
    def _is_base64_encoded_unified_file_id(b64_uid: str) -> Union[str, Literal[False]]:
        # Add padding back if needed
        padded = b64_uid + "=" * (-len(b64_uid) % 4)
        # Decode from base64
        try:
            decoded = base64.urlsafe_b64decode(padded).decode()
            if decoded.startswith(SpecialEnums.LITELM_MANAGED_FILE_ID_PREFIX.value):
                return decoded
            else:
                return False
        except Exception:
            return False

    def convert_b64_uid_to_unified_uid(self, b64_uid: str) -> str:
        is_base64_unified_file_id = self._is_base64_encoded_unified_file_id(b64_uid)
        if is_base64_unified_file_id:
            return is_base64_unified_file_id
        else:
            return b64_uid

    async def get_model_file_id_mapping(
        self, file_ids: List[str], litellm_parent_otel_span: Span
    ) -> dict:
        """
        Get model-specific file IDs for a list of proxy file IDs.
        Returns a dictionary mapping litellm_proxy/ file_id -> model_id -> model_file_id

        1. Get all the litellm_proxy/ file_ids from the messages
        2. For each file_id, search for cache keys matching the pattern file_id:*
        3. Return a dictionary of mappings of litellm_proxy/ file_id -> model_id -> model_file_id

        Example:
        {
            "litellm_proxy/file_id": {
                "model_id": "model_file_id"
            }
        }
        """

        file_id_mapping: Dict[str, Dict[str, str]] = {}
        litellm_managed_file_ids = []

        for file_id in file_ids:
            ## CHECK IF FILE ID IS MANAGED BY LITELM
            is_base64_unified_file_id = self._is_base64_encoded_unified_file_id(file_id)

            if is_base64_unified_file_id:
                litellm_managed_file_ids.append(file_id)

        if litellm_managed_file_ids:
            # Get all cache keys matching the pattern file_id:*
            for file_id in litellm_managed_file_ids:
                # Search for any cache key starting with this file_id
                unified_file_object = await self.get_unified_file_id(
                    file_id, litellm_parent_otel_span
                )
                if unified_file_object:
                    file_id_mapping[file_id] = unified_file_object.model_mappings

        return file_id_mapping

    async def create_file_for_each_model(
        self,
        llm_router: Optional[Router],
        _create_file_request: CreateFileRequest,
        target_model_names_list: List[str],
        litellm_parent_otel_span: Span,
    ) -> List[OpenAIFileObject]:
        if llm_router is None:
            raise Exception("LLM Router not initialized. Ensure models added to proxy.")
        responses = []
        for model in target_model_names_list:
            individual_response = await llm_router.acreate_file(
                model=model, **_create_file_request
            )
            responses.append(individual_response)

        return responses

    async def acreate_file(
        self,
        create_file_request: CreateFileRequest,
        llm_router: Router,
        target_model_names_list: List[str],
        litellm_parent_otel_span: Span,
    ) -> OpenAIFileObject:
        responses = await self.create_file_for_each_model(
            llm_router=llm_router,
            _create_file_request=create_file_request,
            target_model_names_list=target_model_names_list,
            litellm_parent_otel_span=litellm_parent_otel_span,
        )
        response = await _PROXY_LiteLLMManagedFiles.return_unified_file_id(
            file_objects=responses,
            create_file_request=create_file_request,
            internal_usage_cache=self.internal_usage_cache,
            litellm_parent_otel_span=litellm_parent_otel_span,
        )

        ## STORE MODEL MAPPINGS IN DB
        model_mappings: Dict[str, str] = {}
        for file_object in responses:
            model_id = file_object._hidden_params.get("model_id")
            if model_id is None:
                verbose_logger.warning(
                    f"Skipping file_object: {file_object} because model_id in hidden_params={file_object._hidden_params} is None"
                )
                continue
            file_id = file_object.id
            model_mappings[model_id] = file_id

        await self.store_unified_file_id(
            file_id=response.id,
            file_object=response,
            litellm_parent_otel_span=litellm_parent_otel_span,
            model_mappings=model_mappings,
        )
        return response

    @staticmethod
    async def return_unified_file_id(
        file_objects: List[OpenAIFileObject],
        create_file_request: CreateFileRequest,
        internal_usage_cache: InternalUsageCache,
        litellm_parent_otel_span: Span,
    ) -> OpenAIFileObject:
        ## GET THE FILE TYPE FROM THE CREATE FILE REQUEST
        file_data = extract_file_data(create_file_request["file"])

        file_type = file_data["content_type"]

        unified_file_id = SpecialEnums.LITELLM_MANAGED_FILE_COMPLETE_STR.value.format(
            file_type, str(uuid.uuid4())
        )

        # Convert to URL-safe base64 and strip padding
        base64_unified_file_id = (
            base64.urlsafe_b64encode(unified_file_id.encode()).decode().rstrip("=")
        )

        ## CREATE RESPONSE OBJECT

        response = OpenAIFileObject(
            id=base64_unified_file_id,
            object="file",
            purpose=create_file_request["purpose"],
            created_at=file_objects[0].created_at,
            bytes=file_objects[0].bytes,
            filename=file_objects[0].filename,
            status="uploaded",
        )

        return response

    async def afile_retrieve(
        self, file_id: str, litellm_parent_otel_span: Optional[Span]
    ) -> OpenAIFileObject:
        stored_file_object = await self.get_unified_file_id(
            file_id, litellm_parent_otel_span
        )
        if stored_file_object:
            return stored_file_object.file_object
        else:
            raise Exception(f"LiteLLM Managed File object with id={file_id} not found")

    async def afile_list(
        self,
        purpose: Optional[OpenAIFilesPurpose],
        litellm_parent_otel_span: Optional[Span],
        **data: Dict,
    ) -> List[OpenAIFileObject]:
        return []

    async def afile_delete(
        self,
        file_id: str,
        litellm_parent_otel_span: Optional[Span],
        llm_router: Router,
        **data: Dict,
    ) -> OpenAIFileObject:
        file_id = self.convert_b64_uid_to_unified_uid(file_id)
        model_file_id_mapping = await self.get_model_file_id_mapping(
            [file_id], litellm_parent_otel_span
        )
        specific_model_file_id_mapping = model_file_id_mapping.get(file_id)
        if specific_model_file_id_mapping:
            for model_id, file_id in specific_model_file_id_mapping.items():
                await llm_router.afile_delete(model=model_id, file_id=file_id, **data)  # type: ignore

        stored_file_object = await self.delete_unified_file_id(
            file_id, litellm_parent_otel_span
        )
        if stored_file_object:
            return stored_file_object
        else:
            raise Exception(f"LiteLLM Managed File object with id={file_id} not found")

    async def afile_content(
        self,
        file_id: str,
        litellm_parent_otel_span: Optional[Span],
        llm_router: Router,
        **data: Dict,
    ) -> str:
        """
        Get the content of a file from first model that has it
        """
        model_file_id_mapping = await self.get_model_file_id_mapping(
            [file_id], litellm_parent_otel_span
        )
        specific_model_file_id_mapping = model_file_id_mapping.get(file_id)

        if specific_model_file_id_mapping:
            exception_dict = {}
            for model_id, file_id in specific_model_file_id_mapping.items():
                try:
                    return await llm_router.afile_content(model=model_id, file_id=file_id, **data)  # type: ignore
                except Exception as e:
                    exception_dict[model_id] = str(e)
            raise Exception(
                f"LiteLLM Managed File object with id={file_id} not found. Checked model id's: {specific_model_file_id_mapping.keys()}. Errors: {exception_dict}"
            )
        else:
            raise Exception(f"LiteLLM Managed File object with id={file_id} not found")