Spaces:
Sleeping
Sleeping
import os | |
from typing import Any, Dict, List, Optional | |
from pydantic import BaseModel, Field | |
import litellm | |
from litellm._logging import verbose_logger | |
from litellm.integrations.custom_logger import CustomLogger | |
from litellm.llms.custom_httpx.http_handler import ( | |
get_async_httpx_client, | |
httpxSpecialProvider, | |
) | |
# from here: https://docs.rungalileo.io/galileo/gen-ai-studio-products/galileo-observe/how-to/logging-data-via-restful-apis#structuring-your-records | |
class LLMResponse(BaseModel): | |
latency_ms: int | |
status_code: int | |
input_text: str | |
output_text: str | |
node_type: str | |
model: str | |
num_input_tokens: int | |
num_output_tokens: int | |
output_logprobs: Optional[Dict[str, Any]] = Field( | |
default=None, | |
description="Optional. When available, logprobs are used to compute Uncertainty.", | |
) | |
created_at: str = Field( | |
..., description='timestamp constructed in "%Y-%m-%dT%H:%M:%S" format' | |
) | |
tags: Optional[List[str]] = None | |
user_metadata: Optional[Dict[str, Any]] = None | |
class GalileoObserve(CustomLogger): | |
def __init__(self) -> None: | |
self.in_memory_records: List[dict] = [] | |
self.batch_size = 1 | |
self.base_url = os.getenv("GALILEO_BASE_URL", None) | |
self.project_id = os.getenv("GALILEO_PROJECT_ID", None) | |
self.headers: Optional[Dict[str, str]] = None | |
self.async_httpx_handler = get_async_httpx_client( | |
llm_provider=httpxSpecialProvider.LoggingCallback | |
) | |
pass | |
def set_galileo_headers(self): | |
# following https://docs.rungalileo.io/galileo/gen-ai-studio-products/galileo-observe/how-to/logging-data-via-restful-apis#logging-your-records | |
headers = { | |
"accept": "application/json", | |
"Content-Type": "application/x-www-form-urlencoded", | |
} | |
galileo_login_response = litellm.module_level_client.post( | |
url=f"{self.base_url}/login", | |
headers=headers, | |
data={ | |
"username": os.getenv("GALILEO_USERNAME"), | |
"password": os.getenv("GALILEO_PASSWORD"), | |
}, | |
) | |
access_token = galileo_login_response.json()["access_token"] | |
self.headers = { | |
"accept": "application/json", | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {access_token}", | |
} | |
def get_output_str_from_response(self, response_obj, kwargs): | |
output = None | |
if response_obj is not None and ( | |
kwargs.get("call_type", None) == "embedding" | |
or isinstance(response_obj, litellm.EmbeddingResponse) | |
): | |
output = None | |
elif response_obj is not None and isinstance( | |
response_obj, litellm.ModelResponse | |
): | |
output = response_obj["choices"][0]["message"].json() | |
elif response_obj is not None and isinstance( | |
response_obj, litellm.TextCompletionResponse | |
): | |
output = response_obj.choices[0].text | |
elif response_obj is not None and isinstance( | |
response_obj, litellm.ImageResponse | |
): | |
output = response_obj["data"] | |
return output | |
async def async_log_success_event( | |
self, kwargs: Any, response_obj: Any, start_time: Any, end_time: Any | |
): | |
verbose_logger.debug("On Async Success") | |
_latency_ms = int((end_time - start_time).total_seconds() * 1000) | |
_call_type = kwargs.get("call_type", "litellm") | |
input_text = litellm.utils.get_formatted_prompt( | |
data=kwargs, call_type=_call_type | |
) | |
_usage = response_obj.get("usage", {}) or {} | |
num_input_tokens = _usage.get("prompt_tokens", 0) | |
num_output_tokens = _usage.get("completion_tokens", 0) | |
output_text = self.get_output_str_from_response( | |
response_obj=response_obj, kwargs=kwargs | |
) | |
if output_text is not None: | |
request_record = LLMResponse( | |
latency_ms=_latency_ms, | |
status_code=200, | |
input_text=input_text, | |
output_text=output_text, | |
node_type=_call_type, | |
model=kwargs.get("model", "-"), | |
num_input_tokens=num_input_tokens, | |
num_output_tokens=num_output_tokens, | |
created_at=start_time.strftime( | |
"%Y-%m-%dT%H:%M:%S" | |
), # timestamp str constructed in "%Y-%m-%dT%H:%M:%S" format | |
) | |
# dump to dict | |
request_dict = request_record.model_dump() | |
self.in_memory_records.append(request_dict) | |
if len(self.in_memory_records) >= self.batch_size: | |
await self.flush_in_memory_records() | |
async def flush_in_memory_records(self): | |
verbose_logger.debug("flushing in memory records") | |
response = await self.async_httpx_handler.post( | |
url=f"{self.base_url}/projects/{self.project_id}/observe/ingest", | |
headers=self.headers, | |
json={"records": self.in_memory_records}, | |
) | |
if response.status_code == 200: | |
verbose_logger.debug( | |
"Galileo Logger:successfully flushed in memory records" | |
) | |
self.in_memory_records = [] | |
else: | |
verbose_logger.debug("Galileo Logger: failed to flush in memory records") | |
verbose_logger.debug( | |
"Galileo Logger error=%s, status code=%s", | |
response.text, | |
response.status_code, | |
) | |
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time): | |
verbose_logger.debug("On Async Failure") | |