Spaces:
Sleeping
Sleeping
#### What this does #### | |
# On success, logs events to Promptlayer | |
import traceback | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
AsyncGenerator, | |
List, | |
Literal, | |
Optional, | |
Tuple, | |
Union, | |
) | |
from pydantic import BaseModel | |
from litellm.caching.caching import DualCache | |
from litellm.proxy._types import UserAPIKeyAuth | |
from litellm.types.integrations.argilla import ArgillaItem | |
from litellm.types.llms.openai import AllMessageValues, ChatCompletionRequest | |
from litellm.types.utils import ( | |
AdapterCompletionStreamWrapper, | |
LLMResponseTypes, | |
ModelResponse, | |
ModelResponseStream, | |
StandardCallbackDynamicParams, | |
StandardLoggingPayload, | |
) | |
if TYPE_CHECKING: | |
from opentelemetry.trace import Span as _Span | |
Span = Union[_Span, Any] | |
else: | |
Span = Any | |
class CustomLogger: # https://docs.litellm.ai/docs/observability/custom_callback#callback-class | |
# Class variables or attributes | |
def __init__(self, message_logging: bool = True) -> None: | |
self.message_logging = message_logging | |
pass | |
def log_pre_api_call(self, model, messages, kwargs): | |
pass | |
def log_post_api_call(self, kwargs, response_obj, start_time, end_time): | |
pass | |
def log_stream_event(self, kwargs, response_obj, start_time, end_time): | |
pass | |
def log_success_event(self, kwargs, response_obj, start_time, end_time): | |
pass | |
def log_failure_event(self, kwargs, response_obj, start_time, end_time): | |
pass | |
#### ASYNC #### | |
async def async_log_stream_event(self, kwargs, response_obj, start_time, end_time): | |
pass | |
async def async_log_pre_api_call(self, model, messages, kwargs): | |
pass | |
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): | |
pass | |
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time): | |
pass | |
#### PROMPT MANAGEMENT HOOKS #### | |
async def async_get_chat_completion_prompt( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
non_default_params: dict, | |
prompt_id: Optional[str], | |
prompt_variables: Optional[dict], | |
dynamic_callback_params: StandardCallbackDynamicParams, | |
) -> Tuple[str, List[AllMessageValues], dict]: | |
""" | |
Returns: | |
- model: str - the model to use (can be pulled from prompt management tool) | |
- messages: List[AllMessageValues] - the messages to use (can be pulled from prompt management tool) | |
- non_default_params: dict - update with any optional params (e.g. temperature, max_tokens, etc.) to use (can be pulled from prompt management tool) | |
""" | |
return model, messages, non_default_params | |
def get_chat_completion_prompt( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
non_default_params: dict, | |
prompt_id: Optional[str], | |
prompt_variables: Optional[dict], | |
dynamic_callback_params: StandardCallbackDynamicParams, | |
) -> Tuple[str, List[AllMessageValues], dict]: | |
""" | |
Returns: | |
- model: str - the model to use (can be pulled from prompt management tool) | |
- messages: List[AllMessageValues] - the messages to use (can be pulled from prompt management tool) | |
- non_default_params: dict - update with any optional params (e.g. temperature, max_tokens, etc.) to use (can be pulled from prompt management tool) | |
""" | |
return model, messages, non_default_params | |
#### PRE-CALL CHECKS - router/proxy only #### | |
""" | |
Allows usage-based-routing-v2 to run pre-call rpm checks within the picked deployment's semaphore (concurrency-safe tpm/rpm checks). | |
""" | |
async def async_filter_deployments( | |
self, | |
model: str, | |
healthy_deployments: List, | |
messages: Optional[List[AllMessageValues]], | |
request_kwargs: Optional[dict] = None, | |
parent_otel_span: Optional[Span] = None, | |
) -> List[dict]: | |
return healthy_deployments | |
async def async_pre_call_check( | |
self, deployment: dict, parent_otel_span: Optional[Span] | |
) -> Optional[dict]: | |
pass | |
def pre_call_check(self, deployment: dict) -> Optional[dict]: | |
pass | |
#### Fallback Events - router/proxy only #### | |
async def log_model_group_rate_limit_error( | |
self, exception: Exception, original_model_group: Optional[str], kwargs: dict | |
): | |
pass | |
async def log_success_fallback_event( | |
self, original_model_group: str, kwargs: dict, original_exception: Exception | |
): | |
pass | |
async def log_failure_fallback_event( | |
self, original_model_group: str, kwargs: dict, original_exception: Exception | |
): | |
pass | |
#### ADAPTERS #### Allow calling 100+ LLMs in custom format - https://github.com/BerriAI/litellm/pulls | |
def translate_completion_input_params( | |
self, kwargs | |
) -> Optional[ChatCompletionRequest]: | |
""" | |
Translates the input params, from the provider's native format to the litellm.completion() format. | |
""" | |
pass | |
def translate_completion_output_params( | |
self, response: ModelResponse | |
) -> Optional[BaseModel]: | |
""" | |
Translates the output params, from the OpenAI format to the custom format. | |
""" | |
pass | |
def translate_completion_output_params_streaming( | |
self, completion_stream: Any | |
) -> Optional[AdapterCompletionStreamWrapper]: | |
""" | |
Translates the streaming chunk, from the OpenAI format to the custom format. | |
""" | |
pass | |
### DATASET HOOKS #### - currently only used for Argilla | |
async def async_dataset_hook( | |
self, | |
logged_item: ArgillaItem, | |
standard_logging_payload: Optional[StandardLoggingPayload], | |
) -> Optional[ArgillaItem]: | |
""" | |
- Decide if the result should be logged to Argilla. | |
- Modify the result before logging to Argilla. | |
- Return None if the result should not be logged to Argilla. | |
""" | |
raise NotImplementedError("async_dataset_hook not implemented") | |
#### CALL HOOKS - proxy only #### | |
""" | |
Control the modify incoming / outgoung data before calling the model | |
""" | |
async def async_pre_call_hook( | |
self, | |
user_api_key_dict: UserAPIKeyAuth, | |
cache: DualCache, | |
data: dict, | |
call_type: Literal[ | |
"completion", | |
"text_completion", | |
"embeddings", | |
"image_generation", | |
"moderation", | |
"audio_transcription", | |
"pass_through_endpoint", | |
"rerank", | |
], | |
) -> Optional[ | |
Union[Exception, str, dict] | |
]: # raise exception if invalid, return a str for the user to receive - if rejected, or return a modified dictionary for passing into litellm | |
pass | |
async def async_post_call_failure_hook( | |
self, | |
request_data: dict, | |
original_exception: Exception, | |
user_api_key_dict: UserAPIKeyAuth, | |
): | |
pass | |
async def async_post_call_success_hook( | |
self, | |
data: dict, | |
user_api_key_dict: UserAPIKeyAuth, | |
response: LLMResponseTypes, | |
) -> Any: | |
pass | |
async def async_logging_hook( | |
self, kwargs: dict, result: Any, call_type: str | |
) -> Tuple[dict, Any]: | |
"""For masking logged request/response. Return a modified version of the request/result.""" | |
return kwargs, result | |
def logging_hook( | |
self, kwargs: dict, result: Any, call_type: str | |
) -> Tuple[dict, Any]: | |
"""For masking logged request/response. Return a modified version of the request/result.""" | |
return kwargs, result | |
async def async_moderation_hook( | |
self, | |
data: dict, | |
user_api_key_dict: UserAPIKeyAuth, | |
call_type: Literal[ | |
"completion", | |
"embeddings", | |
"image_generation", | |
"moderation", | |
"audio_transcription", | |
"responses", | |
], | |
) -> Any: | |
pass | |
async def async_post_call_streaming_hook( | |
self, | |
user_api_key_dict: UserAPIKeyAuth, | |
response: str, | |
) -> Any: | |
pass | |
async def async_post_call_streaming_iterator_hook( | |
self, | |
user_api_key_dict: UserAPIKeyAuth, | |
response: Any, | |
request_data: dict, | |
) -> AsyncGenerator[ModelResponseStream, None]: | |
async for item in response: | |
yield item | |
#### SINGLE-USE #### - https://docs.litellm.ai/docs/observability/custom_callback#using-your-custom-callback-function | |
def log_input_event(self, model, messages, kwargs, print_verbose, callback_func): | |
try: | |
kwargs["model"] = model | |
kwargs["messages"] = messages | |
kwargs["log_event_type"] = "pre_api_call" | |
callback_func( | |
kwargs, | |
) | |
print_verbose(f"Custom Logger - model call details: {kwargs}") | |
except Exception: | |
print_verbose(f"Custom Logger Error - {traceback.format_exc()}") | |
async def async_log_input_event( | |
self, model, messages, kwargs, print_verbose, callback_func | |
): | |
try: | |
kwargs["model"] = model | |
kwargs["messages"] = messages | |
kwargs["log_event_type"] = "pre_api_call" | |
await callback_func( | |
kwargs, | |
) | |
print_verbose(f"Custom Logger - model call details: {kwargs}") | |
except Exception: | |
print_verbose(f"Custom Logger Error - {traceback.format_exc()}") | |
def log_event( | |
self, kwargs, response_obj, start_time, end_time, print_verbose, callback_func | |
): | |
# Method definition | |
try: | |
kwargs["log_event_type"] = "post_api_call" | |
callback_func( | |
kwargs, # kwargs to func | |
response_obj, | |
start_time, | |
end_time, | |
) | |
except Exception: | |
print_verbose(f"Custom Logger Error - {traceback.format_exc()}") | |
pass | |
async def async_log_event( | |
self, kwargs, response_obj, start_time, end_time, print_verbose, callback_func | |
): | |
# Method definition | |
try: | |
kwargs["log_event_type"] = "post_api_call" | |
await callback_func( | |
kwargs, # kwargs to func | |
response_obj, | |
start_time, | |
end_time, | |
) | |
except Exception: | |
print_verbose(f"Custom Logger Error - {traceback.format_exc()}") | |
pass | |
# Useful helpers for custom logger classes | |
def truncate_standard_logging_payload_content( | |
self, | |
standard_logging_object: StandardLoggingPayload, | |
): | |
""" | |
Truncate error strings and message content in logging payload | |
Some loggers like DataDog/ GCS Bucket have a limit on the size of the payload. (1MB) | |
This function truncates the error string and the message content if they exceed a certain length. | |
""" | |
MAX_STR_LENGTH = 10_000 | |
# Truncate fields that might exceed max length | |
fields_to_truncate = ["error_str", "messages", "response"] | |
for field in fields_to_truncate: | |
self._truncate_field( | |
standard_logging_object=standard_logging_object, | |
field_name=field, | |
max_length=MAX_STR_LENGTH, | |
) | |
def _truncate_field( | |
self, | |
standard_logging_object: StandardLoggingPayload, | |
field_name: str, | |
max_length: int, | |
) -> None: | |
""" | |
Helper function to truncate a field in the logging payload | |
This converts the field to a string and then truncates it if it exceeds the max length. | |
Why convert to string ? | |
1. User was sending a poorly formatted list for `messages` field, we could not predict where they would send content | |
- Converting to string and then truncating the logged content catches this | |
2. We want to avoid modifying the original `messages`, `response`, and `error_str` in the logging payload since these are in kwargs and could be returned to the user | |
""" | |
field_value = standard_logging_object.get(field_name) # type: ignore | |
if field_value: | |
str_value = str(field_value) | |
if len(str_value) > max_length: | |
standard_logging_object[field_name] = self._truncate_text( # type: ignore | |
text=str_value, max_length=max_length | |
) | |
def _truncate_text(self, text: str, max_length: int) -> str: | |
"""Truncate text if it exceeds max_length""" | |
return ( | |
text[:max_length] | |
+ "...truncated by litellm, this logger does not support large content" | |
if len(text) > max_length | |
else text | |
) | |