inferencing-llm / litellm /integrations /langfuse /langfuse_prompt_management.py
Shyamnath's picture
Push core package and essential files
469eae6
raw
history blame
10.1 kB
"""
Call Hook for LiteLLM Proxy which allows Langfuse prompt management.
"""
import os
from functools import lru_cache
from typing import TYPE_CHECKING, Any, List, Literal, Optional, Tuple, Union, cast
from packaging.version import Version
from typing_extensions import TypeAlias
from litellm.integrations.custom_logger import CustomLogger
from litellm.integrations.prompt_management_base import PromptManagementClient
from litellm.litellm_core_utils.asyncify import run_async_function
from litellm.types.llms.openai import AllMessageValues, ChatCompletionSystemMessage
from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload
from ...litellm_core_utils.specialty_caches.dynamic_logging_cache import (
DynamicLoggingCache,
)
from ..prompt_management_base import PromptManagementBase
from .langfuse import LangFuseLogger
from .langfuse_handler import LangFuseHandler
if TYPE_CHECKING:
from langfuse import Langfuse
from langfuse.client import ChatPromptClient, TextPromptClient
LangfuseClass: TypeAlias = Langfuse
PROMPT_CLIENT = Union[TextPromptClient, ChatPromptClient]
else:
PROMPT_CLIENT = Any
LangfuseClass = Any
in_memory_dynamic_logger_cache = DynamicLoggingCache()
@lru_cache(maxsize=10)
def langfuse_client_init(
langfuse_public_key=None,
langfuse_secret=None,
langfuse_secret_key=None,
langfuse_host=None,
flush_interval=1,
) -> LangfuseClass:
"""
Initialize Langfuse client with caching to prevent multiple initializations.
Args:
langfuse_public_key (str, optional): Public key for Langfuse. Defaults to None.
langfuse_secret (str, optional): Secret key for Langfuse. Defaults to None.
langfuse_host (str, optional): Host URL for Langfuse. Defaults to None.
flush_interval (int, optional): Flush interval in seconds. Defaults to 1.
Returns:
Langfuse: Initialized Langfuse client instance
Raises:
Exception: If langfuse package is not installed
"""
try:
import langfuse
from langfuse import Langfuse
except Exception as e:
raise Exception(
f"\033[91mLangfuse not installed, try running 'pip install langfuse' to fix this error: {e}\n\033[0m"
)
# Instance variables
secret_key = (
langfuse_secret or langfuse_secret_key or os.getenv("LANGFUSE_SECRET_KEY")
)
public_key = langfuse_public_key or os.getenv("LANGFUSE_PUBLIC_KEY")
langfuse_host = langfuse_host or os.getenv(
"LANGFUSE_HOST", "https://cloud.langfuse.com"
)
if not (
langfuse_host.startswith("http://") or langfuse_host.startswith("https://")
):
# add http:// if unset, assume communicating over private network - e.g. render
langfuse_host = "http://" + langfuse_host
langfuse_release = os.getenv("LANGFUSE_RELEASE")
langfuse_debug = os.getenv("LANGFUSE_DEBUG")
parameters = {
"public_key": public_key,
"secret_key": secret_key,
"host": langfuse_host,
"release": langfuse_release,
"debug": langfuse_debug,
"flush_interval": LangFuseLogger._get_langfuse_flush_interval(
flush_interval
), # flush interval in seconds
}
if Version(langfuse.version.__version__) >= Version("2.6.0"):
parameters["sdk_integration"] = "litellm"
client = Langfuse(**parameters)
return client
class LangfusePromptManagement(LangFuseLogger, PromptManagementBase, CustomLogger):
def __init__(
self,
langfuse_public_key=None,
langfuse_secret=None,
langfuse_host=None,
flush_interval=1,
):
import langfuse
self.langfuse_sdk_version = langfuse.version.__version__
self.Langfuse = langfuse_client_init(
langfuse_public_key=langfuse_public_key,
langfuse_secret=langfuse_secret,
langfuse_host=langfuse_host,
flush_interval=flush_interval,
)
@property
def integration_name(self):
return "langfuse"
def _get_prompt_from_id(
self, langfuse_prompt_id: str, langfuse_client: LangfuseClass
) -> PROMPT_CLIENT:
return langfuse_client.get_prompt(langfuse_prompt_id)
def _compile_prompt(
self,
langfuse_prompt_client: PROMPT_CLIENT,
langfuse_prompt_variables: Optional[dict],
call_type: Union[Literal["completion"], Literal["text_completion"]],
) -> List[AllMessageValues]:
compiled_prompt: Optional[Union[str, list]] = None
if langfuse_prompt_variables is None:
langfuse_prompt_variables = {}
compiled_prompt = langfuse_prompt_client.compile(**langfuse_prompt_variables)
if isinstance(compiled_prompt, str):
compiled_prompt = [
ChatCompletionSystemMessage(role="system", content=compiled_prompt)
]
else:
compiled_prompt = cast(List[AllMessageValues], compiled_prompt)
return compiled_prompt
def _get_optional_params_from_langfuse(
self, langfuse_prompt_client: PROMPT_CLIENT
) -> dict:
config = langfuse_prompt_client.config
optional_params = {}
for k, v in config.items():
if k != "model":
optional_params[k] = v
return optional_params
async def async_get_chat_completion_prompt(
self,
model: str,
messages: List[AllMessageValues],
non_default_params: dict,
prompt_id: Optional[str],
prompt_variables: Optional[dict],
dynamic_callback_params: StandardCallbackDynamicParams,
) -> Tuple[
str,
List[AllMessageValues],
dict,
]:
return self.get_chat_completion_prompt(
model,
messages,
non_default_params,
prompt_id,
prompt_variables,
dynamic_callback_params,
)
def should_run_prompt_management(
self,
prompt_id: str,
dynamic_callback_params: StandardCallbackDynamicParams,
) -> bool:
langfuse_client = langfuse_client_init(
langfuse_public_key=dynamic_callback_params.get("langfuse_public_key"),
langfuse_secret=dynamic_callback_params.get("langfuse_secret"),
langfuse_secret_key=dynamic_callback_params.get("langfuse_secret_key"),
langfuse_host=dynamic_callback_params.get("langfuse_host"),
)
langfuse_prompt_client = self._get_prompt_from_id(
langfuse_prompt_id=prompt_id, langfuse_client=langfuse_client
)
return langfuse_prompt_client is not None
def _compile_prompt_helper(
self,
prompt_id: str,
prompt_variables: Optional[dict],
dynamic_callback_params: StandardCallbackDynamicParams,
) -> PromptManagementClient:
langfuse_client = langfuse_client_init(
langfuse_public_key=dynamic_callback_params.get("langfuse_public_key"),
langfuse_secret=dynamic_callback_params.get("langfuse_secret"),
langfuse_secret_key=dynamic_callback_params.get("langfuse_secret_key"),
langfuse_host=dynamic_callback_params.get("langfuse_host"),
)
langfuse_prompt_client = self._get_prompt_from_id(
langfuse_prompt_id=prompt_id, langfuse_client=langfuse_client
)
## SET PROMPT
compiled_prompt = self._compile_prompt(
langfuse_prompt_client=langfuse_prompt_client,
langfuse_prompt_variables=prompt_variables,
call_type="completion",
)
template_model = langfuse_prompt_client.config.get("model")
template_optional_params = self._get_optional_params_from_langfuse(
langfuse_prompt_client
)
return PromptManagementClient(
prompt_id=prompt_id,
prompt_template=compiled_prompt,
prompt_template_model=template_model,
prompt_template_optional_params=template_optional_params,
completed_messages=None,
)
def log_success_event(self, kwargs, response_obj, start_time, end_time):
return run_async_function(
self.async_log_success_event, kwargs, response_obj, start_time, end_time
)
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
standard_callback_dynamic_params = kwargs.get(
"standard_callback_dynamic_params"
)
langfuse_logger_to_use = LangFuseHandler.get_langfuse_logger_for_request(
globalLangfuseLogger=self,
standard_callback_dynamic_params=standard_callback_dynamic_params,
in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
)
langfuse_logger_to_use.log_event_on_langfuse(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
user_id=kwargs.get("user", None),
)
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
standard_callback_dynamic_params = kwargs.get(
"standard_callback_dynamic_params"
)
langfuse_logger_to_use = LangFuseHandler.get_langfuse_logger_for_request(
globalLangfuseLogger=self,
standard_callback_dynamic_params=standard_callback_dynamic_params,
in_memory_dynamic_logger_cache=in_memory_dynamic_logger_cache,
)
standard_logging_object = cast(
Optional[StandardLoggingPayload],
kwargs.get("standard_logging_object", None),
)
if standard_logging_object is None:
return
langfuse_logger_to_use.log_event_on_langfuse(
start_time=start_time,
end_time=end_time,
response_obj=None,
user_id=kwargs.get("user", None),
status_message=standard_logging_object["error_str"],
level="ERROR",
kwargs=kwargs,
)