inferencing-llm / litellm /llms /azure /audio_transcriptions.py
Shyamnath's picture
Push core package and essential files
469eae6
raw
history blame
7.32 kB
import uuid
from typing import Any, Coroutine, Optional, Union
from openai import AsyncAzureOpenAI, AzureOpenAI
from pydantic import BaseModel
from litellm.litellm_core_utils.audio_utils.utils import get_audio_file_name
from litellm.types.utils import FileTypes
from litellm.utils import (
TranscriptionResponse,
convert_to_model_response_object,
extract_duration_from_srt_or_vtt,
)
from .azure import AzureChatCompletion
from .common_utils import AzureOpenAIError
class AzureAudioTranscription(AzureChatCompletion):
def audio_transcriptions(
self,
model: str,
audio_file: FileTypes,
optional_params: dict,
logging_obj: Any,
model_response: TranscriptionResponse,
timeout: float,
max_retries: int,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
client=None,
azure_ad_token: Optional[str] = None,
atranscription: bool = False,
litellm_params: Optional[dict] = None,
) -> Union[TranscriptionResponse, Coroutine[Any, Any, TranscriptionResponse]]:
data = {"model": model, "file": audio_file, **optional_params}
if atranscription is True:
return self.async_audio_transcriptions(
audio_file=audio_file,
data=data,
model_response=model_response,
timeout=timeout,
api_key=api_key,
api_base=api_base,
client=client,
max_retries=max_retries,
logging_obj=logging_obj,
model=model,
litellm_params=litellm_params,
)
azure_client = self.get_azure_openai_client(
api_version=api_version,
api_base=api_base,
api_key=api_key,
model=model,
_is_async=False,
client=client,
litellm_params=litellm_params,
)
if not isinstance(azure_client, AzureOpenAI):
raise AzureOpenAIError(
status_code=500,
message="azure_client is not an instance of AzureOpenAI",
)
## LOGGING
logging_obj.pre_call(
input=f"audio_file_{uuid.uuid4()}",
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
)
response = azure_client.audio.transcriptions.create(
**data, timeout=timeout # type: ignore
)
if isinstance(response, BaseModel):
stringified_response = response.model_dump()
else:
stringified_response = TranscriptionResponse(text=response).model_dump()
## LOGGING
logging_obj.post_call(
input=get_audio_file_name(audio_file),
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
final_response: TranscriptionResponse = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
return final_response
async def async_audio_transcriptions(
self,
audio_file: FileTypes,
model: str,
data: dict,
model_response: TranscriptionResponse,
timeout: float,
logging_obj: Any,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
max_retries=None,
litellm_params: Optional[dict] = None,
) -> TranscriptionResponse:
response = None
try:
async_azure_client = self.get_azure_openai_client(
api_version=api_version,
api_base=api_base,
api_key=api_key,
model=model,
_is_async=True,
client=client,
litellm_params=litellm_params,
)
if not isinstance(async_azure_client, AsyncAzureOpenAI):
raise AzureOpenAIError(
status_code=500,
message="async_azure_client is not an instance of AsyncAzureOpenAI",
)
## LOGGING
logging_obj.pre_call(
input=f"audio_file_{uuid.uuid4()}",
api_key=async_azure_client.api_key,
additional_args={
"headers": {
"Authorization": f"Bearer {async_azure_client.api_key}"
},
"api_base": async_azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
)
raw_response = (
await async_azure_client.audio.transcriptions.with_raw_response.create(
**data, timeout=timeout
)
) # type: ignore
headers = dict(raw_response.headers)
response = raw_response.parse()
if isinstance(response, BaseModel):
stringified_response = response.model_dump()
else:
stringified_response = TranscriptionResponse(text=response).model_dump()
duration = extract_duration_from_srt_or_vtt(response)
stringified_response["duration"] = duration
## LOGGING
logging_obj.post_call(
input=get_audio_file_name(audio_file),
api_key=api_key,
additional_args={
"headers": {
"Authorization": f"Bearer {async_azure_client.api_key}"
},
"api_base": async_azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
response = convert_to_model_response_object(
_response_headers=headers,
response_object=stringified_response,
model_response_object=model_response,
hidden_params=hidden_params,
response_type="audio_transcription",
)
if not isinstance(response, TranscriptionResponse):
raise AzureOpenAIError(
status_code=500,
message="response is not an instance of TranscriptionResponse",
)
return response
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e