Spaces:
Sleeping
Sleeping
""" | |
Main File for Fine Tuning API implementation | |
https://platform.openai.com/docs/api-reference/fine-tuning | |
- fine_tuning.jobs.create() | |
- fine_tuning.jobs.list() | |
- client.fine_tuning.jobs.list_events() | |
""" | |
import asyncio | |
import contextvars | |
import os | |
from functools import partial | |
from typing import Any, Coroutine, Dict, Literal, Optional, Union | |
import httpx | |
import litellm | |
from litellm._logging import verbose_logger | |
from litellm.llms.azure.fine_tuning.handler import AzureOpenAIFineTuningAPI | |
from litellm.llms.openai.fine_tuning.handler import OpenAIFineTuningAPI | |
from litellm.llms.vertex_ai.fine_tuning.handler import VertexFineTuningAPI | |
from litellm.secret_managers.main import get_secret_str | |
from litellm.types.llms.openai import ( | |
FineTuningJob, | |
FineTuningJobCreate, | |
Hyperparameters, | |
) | |
from litellm.types.router import * | |
from litellm.utils import client, supports_httpx_timeout | |
####### ENVIRONMENT VARIABLES ################### | |
openai_fine_tuning_apis_instance = OpenAIFineTuningAPI() | |
azure_fine_tuning_apis_instance = AzureOpenAIFineTuningAPI() | |
vertex_fine_tuning_apis_instance = VertexFineTuningAPI() | |
################################################# | |
async def acreate_fine_tuning_job( | |
model: str, | |
training_file: str, | |
hyperparameters: Optional[dict] = {}, | |
suffix: Optional[str] = None, | |
validation_file: Optional[str] = None, | |
integrations: Optional[List[str]] = None, | |
seed: Optional[int] = None, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> FineTuningJob: | |
""" | |
Async: Creates and executes a batch from an uploaded file of request | |
""" | |
verbose_logger.debug( | |
"inside acreate_fine_tuning_job model=%s and kwargs=%s", model, kwargs | |
) | |
try: | |
loop = asyncio.get_event_loop() | |
kwargs["acreate_fine_tuning_job"] = True | |
# Use a partial function to pass your keyword arguments | |
func = partial( | |
create_fine_tuning_job, | |
model, | |
training_file, | |
hyperparameters, | |
suffix, | |
validation_file, | |
integrations, | |
seed, | |
custom_llm_provider, | |
extra_headers, | |
extra_body, | |
**kwargs, | |
) | |
# Add the context to the function | |
ctx = contextvars.copy_context() | |
func_with_context = partial(ctx.run, func) | |
init_response = await loop.run_in_executor(None, func_with_context) | |
if asyncio.iscoroutine(init_response): | |
response = await init_response | |
else: | |
response = init_response # type: ignore | |
return response | |
except Exception as e: | |
raise e | |
def create_fine_tuning_job( | |
model: str, | |
training_file: str, | |
hyperparameters: Optional[dict] = {}, | |
suffix: Optional[str] = None, | |
validation_file: Optional[str] = None, | |
integrations: Optional[List[str]] = None, | |
seed: Optional[int] = None, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: | |
""" | |
Creates a fine-tuning job which begins the process of creating a new model from a given dataset. | |
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete | |
""" | |
try: | |
_is_async = kwargs.pop("acreate_fine_tuning_job", False) is True | |
optional_params = GenericLiteLLMParams(**kwargs) | |
# handle hyperparameters | |
hyperparameters = hyperparameters or {} # original hyperparameters | |
_oai_hyperparameters: Hyperparameters = Hyperparameters( | |
**hyperparameters | |
) # Typed Hyperparameters for OpenAI Spec | |
### TIMEOUT LOGIC ### | |
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
# set timeout for 10 minutes by default | |
if ( | |
timeout is not None | |
and isinstance(timeout, httpx.Timeout) | |
and supports_httpx_timeout(custom_llm_provider) is False | |
): | |
read_timeout = timeout.read or 600 | |
timeout = read_timeout # default 10 min timeout | |
elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
timeout = float(timeout) # type: ignore | |
elif timeout is None: | |
timeout = 600.0 | |
# OpenAI | |
if custom_llm_provider == "openai": | |
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or os.getenv("OPENAI_BASE_URL") | |
or os.getenv("OPENAI_API_BASE") | |
or "https://api.openai.com/v1" | |
) | |
organization = ( | |
optional_params.organization | |
or litellm.organization | |
or os.getenv("OPENAI_ORGANIZATION", None) | |
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
) | |
# set API KEY | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
or litellm.openai_key | |
or os.getenv("OPENAI_API_KEY") | |
) | |
create_fine_tuning_job_data = FineTuningJobCreate( | |
model=model, | |
training_file=training_file, | |
hyperparameters=_oai_hyperparameters, | |
suffix=suffix, | |
validation_file=validation_file, | |
integrations=integrations, | |
seed=seed, | |
) | |
create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump( | |
exclude_none=True | |
) | |
response = openai_fine_tuning_apis_instance.create_fine_tuning_job( | |
api_base=api_base, | |
api_key=api_key, | |
api_version=optional_params.api_version, | |
organization=organization, | |
create_fine_tuning_job_data=create_fine_tuning_job_data_dict, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
client=kwargs.get( | |
"client", None | |
), # note, when we add this to `GenericLiteLLMParams` it impacts a lot of other tests + linting | |
) | |
# Azure OpenAI | |
elif custom_llm_provider == "azure": | |
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
api_version = ( | |
optional_params.api_version | |
or litellm.api_version | |
or get_secret_str("AZURE_API_VERSION") | |
) # type: ignore | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.azure_key | |
or get_secret_str("AZURE_OPENAI_API_KEY") | |
or get_secret_str("AZURE_API_KEY") | |
) # type: ignore | |
extra_body = optional_params.get("extra_body", {}) | |
if extra_body is not None: | |
extra_body.pop("azure_ad_token", None) | |
else: | |
get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
create_fine_tuning_job_data = FineTuningJobCreate( | |
model=model, | |
training_file=training_file, | |
hyperparameters=_oai_hyperparameters, | |
suffix=suffix, | |
validation_file=validation_file, | |
integrations=integrations, | |
seed=seed, | |
) | |
create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump( | |
exclude_none=True | |
) | |
response = azure_fine_tuning_apis_instance.create_fine_tuning_job( | |
api_base=api_base, | |
api_key=api_key, | |
api_version=api_version, | |
create_fine_tuning_job_data=create_fine_tuning_job_data_dict, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
organization=optional_params.organization, | |
) | |
elif custom_llm_provider == "vertex_ai": | |
api_base = optional_params.api_base or "" | |
vertex_ai_project = ( | |
optional_params.vertex_project | |
or litellm.vertex_project | |
or get_secret_str("VERTEXAI_PROJECT") | |
) | |
vertex_ai_location = ( | |
optional_params.vertex_location | |
or litellm.vertex_location | |
or get_secret_str("VERTEXAI_LOCATION") | |
) | |
vertex_credentials = optional_params.vertex_credentials or get_secret_str( | |
"VERTEXAI_CREDENTIALS" | |
) | |
create_fine_tuning_job_data = FineTuningJobCreate( | |
model=model, | |
training_file=training_file, | |
hyperparameters=_oai_hyperparameters, | |
suffix=suffix, | |
validation_file=validation_file, | |
integrations=integrations, | |
seed=seed, | |
) | |
response = vertex_fine_tuning_apis_instance.create_fine_tuning_job( | |
_is_async=_is_async, | |
create_fine_tuning_job_data=create_fine_tuning_job_data, | |
vertex_credentials=vertex_credentials, | |
vertex_project=vertex_ai_project, | |
vertex_location=vertex_ai_location, | |
timeout=timeout, | |
api_base=api_base, | |
kwargs=kwargs, | |
original_hyperparameters=hyperparameters, | |
) | |
else: | |
raise litellm.exceptions.BadRequestError( | |
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( | |
custom_llm_provider | |
), | |
model="n/a", | |
llm_provider=custom_llm_provider, | |
response=httpx.Response( | |
status_code=400, | |
content="Unsupported provider", | |
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore | |
), | |
) | |
return response | |
except Exception as e: | |
verbose_logger.error("got exception in create_fine_tuning_job=%s", str(e)) | |
raise e | |
async def acancel_fine_tuning_job( | |
fine_tuning_job_id: str, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> FineTuningJob: | |
""" | |
Async: Immediately cancel a fine-tune job. | |
""" | |
try: | |
loop = asyncio.get_event_loop() | |
kwargs["acancel_fine_tuning_job"] = True | |
# Use a partial function to pass your keyword arguments | |
func = partial( | |
cancel_fine_tuning_job, | |
fine_tuning_job_id, | |
custom_llm_provider, | |
extra_headers, | |
extra_body, | |
**kwargs, | |
) | |
# Add the context to the function | |
ctx = contextvars.copy_context() | |
func_with_context = partial(ctx.run, func) | |
init_response = await loop.run_in_executor(None, func_with_context) | |
if asyncio.iscoroutine(init_response): | |
response = await init_response | |
else: | |
response = init_response # type: ignore | |
return response | |
except Exception as e: | |
raise e | |
def cancel_fine_tuning_job( | |
fine_tuning_job_id: str, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: | |
""" | |
Immediately cancel a fine-tune job. | |
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete | |
""" | |
try: | |
optional_params = GenericLiteLLMParams(**kwargs) | |
### TIMEOUT LOGIC ### | |
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
# set timeout for 10 minutes by default | |
if ( | |
timeout is not None | |
and isinstance(timeout, httpx.Timeout) | |
and supports_httpx_timeout(custom_llm_provider) is False | |
): | |
read_timeout = timeout.read or 600 | |
timeout = read_timeout # default 10 min timeout | |
elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
timeout = float(timeout) # type: ignore | |
elif timeout is None: | |
timeout = 600.0 | |
_is_async = kwargs.pop("acancel_fine_tuning_job", False) is True | |
# OpenAI | |
if custom_llm_provider == "openai": | |
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or os.getenv("OPENAI_BASE_URL") | |
or os.getenv("OPENAI_API_BASE") | |
or "https://api.openai.com/v1" | |
) | |
organization = ( | |
optional_params.organization | |
or litellm.organization | |
or os.getenv("OPENAI_ORGANIZATION", None) | |
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
) | |
# set API KEY | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
or litellm.openai_key | |
or os.getenv("OPENAI_API_KEY") | |
) | |
response = openai_fine_tuning_apis_instance.cancel_fine_tuning_job( | |
api_base=api_base, | |
api_key=api_key, | |
api_version=optional_params.api_version, | |
organization=organization, | |
fine_tuning_job_id=fine_tuning_job_id, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
client=kwargs.get("client", None), | |
) | |
# Azure OpenAI | |
elif custom_llm_provider == "azure": | |
api_base = optional_params.api_base or litellm.api_base or get_secret("AZURE_API_BASE") # type: ignore | |
api_version = ( | |
optional_params.api_version | |
or litellm.api_version | |
or get_secret_str("AZURE_API_VERSION") | |
) # type: ignore | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.azure_key | |
or get_secret_str("AZURE_OPENAI_API_KEY") | |
or get_secret_str("AZURE_API_KEY") | |
) # type: ignore | |
extra_body = optional_params.get("extra_body", {}) | |
if extra_body is not None: | |
extra_body.pop("azure_ad_token", None) | |
else: | |
get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
response = azure_fine_tuning_apis_instance.cancel_fine_tuning_job( | |
api_base=api_base, | |
api_key=api_key, | |
api_version=api_version, | |
fine_tuning_job_id=fine_tuning_job_id, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
organization=optional_params.organization, | |
) | |
else: | |
raise litellm.exceptions.BadRequestError( | |
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( | |
custom_llm_provider | |
), | |
model="n/a", | |
llm_provider=custom_llm_provider, | |
response=httpx.Response( | |
status_code=400, | |
content="Unsupported provider", | |
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore | |
), | |
) | |
return response | |
except Exception as e: | |
raise e | |
async def alist_fine_tuning_jobs( | |
after: Optional[str] = None, | |
limit: Optional[int] = None, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
): | |
""" | |
Async: List your organization's fine-tuning jobs | |
""" | |
try: | |
loop = asyncio.get_event_loop() | |
kwargs["alist_fine_tuning_jobs"] = True | |
# Use a partial function to pass your keyword arguments | |
func = partial( | |
list_fine_tuning_jobs, | |
after, | |
limit, | |
custom_llm_provider, | |
extra_headers, | |
extra_body, | |
**kwargs, | |
) | |
# Add the context to the function | |
ctx = contextvars.copy_context() | |
func_with_context = partial(ctx.run, func) | |
init_response = await loop.run_in_executor(None, func_with_context) | |
if asyncio.iscoroutine(init_response): | |
response = await init_response | |
else: | |
response = init_response # type: ignore | |
return response | |
except Exception as e: | |
raise e | |
def list_fine_tuning_jobs( | |
after: Optional[str] = None, | |
limit: Optional[int] = None, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
): | |
""" | |
List your organization's fine-tuning jobs | |
Params: | |
- after: Optional[str] = None, Identifier for the last job from the previous pagination request. | |
- limit: Optional[int] = None, Number of fine-tuning jobs to retrieve. Defaults to 20 | |
""" | |
try: | |
optional_params = GenericLiteLLMParams(**kwargs) | |
### TIMEOUT LOGIC ### | |
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
# set timeout for 10 minutes by default | |
if ( | |
timeout is not None | |
and isinstance(timeout, httpx.Timeout) | |
and supports_httpx_timeout(custom_llm_provider) is False | |
): | |
read_timeout = timeout.read or 600 | |
timeout = read_timeout # default 10 min timeout | |
elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
timeout = float(timeout) # type: ignore | |
elif timeout is None: | |
timeout = 600.0 | |
_is_async = kwargs.pop("alist_fine_tuning_jobs", False) is True | |
# OpenAI | |
if custom_llm_provider == "openai": | |
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or os.getenv("OPENAI_BASE_URL") | |
or os.getenv("OPENAI_API_BASE") | |
or "https://api.openai.com/v1" | |
) | |
organization = ( | |
optional_params.organization | |
or litellm.organization | |
or os.getenv("OPENAI_ORGANIZATION", None) | |
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
) | |
# set API KEY | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
or litellm.openai_key | |
or os.getenv("OPENAI_API_KEY") | |
) | |
response = openai_fine_tuning_apis_instance.list_fine_tuning_jobs( | |
api_base=api_base, | |
api_key=api_key, | |
api_version=optional_params.api_version, | |
organization=organization, | |
after=after, | |
limit=limit, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
client=kwargs.get("client", None), | |
) | |
# Azure OpenAI | |
elif custom_llm_provider == "azure": | |
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
api_version = ( | |
optional_params.api_version | |
or litellm.api_version | |
or get_secret_str("AZURE_API_VERSION") | |
) # type: ignore | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.azure_key | |
or get_secret_str("AZURE_OPENAI_API_KEY") | |
or get_secret_str("AZURE_API_KEY") | |
) # type: ignore | |
extra_body = optional_params.get("extra_body", {}) | |
if extra_body is not None: | |
extra_body.pop("azure_ad_token", None) | |
else: | |
get_secret("AZURE_AD_TOKEN") # type: ignore | |
response = azure_fine_tuning_apis_instance.list_fine_tuning_jobs( | |
api_base=api_base, | |
api_key=api_key, | |
api_version=api_version, | |
after=after, | |
limit=limit, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
organization=optional_params.organization, | |
) | |
else: | |
raise litellm.exceptions.BadRequestError( | |
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( | |
custom_llm_provider | |
), | |
model="n/a", | |
llm_provider=custom_llm_provider, | |
response=httpx.Response( | |
status_code=400, | |
content="Unsupported provider", | |
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore | |
), | |
) | |
return response | |
except Exception as e: | |
raise e | |
async def aretrieve_fine_tuning_job( | |
fine_tuning_job_id: str, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> FineTuningJob: | |
""" | |
Async: Get info about a fine-tuning job. | |
""" | |
try: | |
loop = asyncio.get_event_loop() | |
kwargs["aretrieve_fine_tuning_job"] = True | |
# Use a partial function to pass your keyword arguments | |
func = partial( | |
retrieve_fine_tuning_job, | |
fine_tuning_job_id, | |
custom_llm_provider, | |
extra_headers, | |
extra_body, | |
**kwargs, | |
) | |
# Add the context to the function | |
ctx = contextvars.copy_context() | |
func_with_context = partial(ctx.run, func) | |
init_response = await loop.run_in_executor(None, func_with_context) | |
if asyncio.iscoroutine(init_response): | |
response = await init_response | |
else: | |
response = init_response # type: ignore | |
return response | |
except Exception as e: | |
raise e | |
def retrieve_fine_tuning_job( | |
fine_tuning_job_id: str, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: | |
""" | |
Get info about a fine-tuning job. | |
""" | |
try: | |
optional_params = GenericLiteLLMParams(**kwargs) | |
### TIMEOUT LOGIC ### | |
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
# set timeout for 10 minutes by default | |
if ( | |
timeout is not None | |
and isinstance(timeout, httpx.Timeout) | |
and supports_httpx_timeout(custom_llm_provider) is False | |
): | |
read_timeout = timeout.read or 600 | |
timeout = read_timeout # default 10 min timeout | |
elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
timeout = float(timeout) # type: ignore | |
elif timeout is None: | |
timeout = 600.0 | |
_is_async = kwargs.pop("aretrieve_fine_tuning_job", False) is True | |
# OpenAI | |
if custom_llm_provider == "openai": | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or os.getenv("OPENAI_BASE_URL") | |
or os.getenv("OPENAI_API_BASE") | |
or "https://api.openai.com/v1" | |
) | |
organization = ( | |
optional_params.organization | |
or litellm.organization | |
or os.getenv("OPENAI_ORGANIZATION", None) | |
or None | |
) | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.openai_key | |
or os.getenv("OPENAI_API_KEY") | |
) | |
response = openai_fine_tuning_apis_instance.retrieve_fine_tuning_job( | |
api_base=api_base, | |
api_key=api_key, | |
api_version=optional_params.api_version, | |
organization=organization, | |
fine_tuning_job_id=fine_tuning_job_id, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
client=kwargs.get("client", None), | |
) | |
# Azure OpenAI | |
elif custom_llm_provider == "azure": | |
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
api_version = ( | |
optional_params.api_version | |
or litellm.api_version | |
or get_secret_str("AZURE_API_VERSION") | |
) # type: ignore | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.azure_key | |
or get_secret_str("AZURE_OPENAI_API_KEY") | |
or get_secret_str("AZURE_API_KEY") | |
) # type: ignore | |
extra_body = optional_params.get("extra_body", {}) | |
if extra_body is not None: | |
extra_body.pop("azure_ad_token", None) | |
else: | |
get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
response = azure_fine_tuning_apis_instance.retrieve_fine_tuning_job( | |
api_base=api_base, | |
api_key=api_key, | |
api_version=api_version, | |
fine_tuning_job_id=fine_tuning_job_id, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
organization=optional_params.organization, | |
) | |
else: | |
raise litellm.exceptions.BadRequestError( | |
message="LiteLLM doesn't support {} for 'retrieve_fine_tuning_job'. Only 'openai' and 'azure' are supported.".format( | |
custom_llm_provider | |
), | |
model="n/a", | |
llm_provider=custom_llm_provider, | |
response=httpx.Response( | |
status_code=400, | |
content="Unsupported provider", | |
request=httpx.Request(method="retrieve_fine_tuning_job", url="https://github.com/BerriAI/litellm"), # type: ignore | |
), | |
) | |
return response | |
except Exception as e: | |
raise e | |