Shyamnath's picture
Push core package and essential files
469eae6
import json
import os
from typing import Any, Callable, Dict, Optional, Union
import httpx
from openai import AsyncAzureOpenAI, AzureOpenAI
import litellm
from litellm._logging import verbose_logger
from litellm.caching.caching import DualCache
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.llms.openai.common_utils import BaseOpenAILLM
from litellm.secret_managers.get_azure_ad_token_provider import (
get_azure_ad_token_provider,
)
from litellm.secret_managers.main import get_secret_str
azure_ad_cache = DualCache()
class AzureOpenAIError(BaseLLMException):
def __init__(
self,
status_code,
message,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
headers: Optional[Union[httpx.Headers, dict]] = None,
body: Optional[dict] = None,
):
super().__init__(
status_code=status_code,
message=message,
request=request,
response=response,
headers=headers,
body=body,
)
def process_azure_headers(headers: Union[httpx.Headers, dict]) -> dict:
openai_headers = {}
if "x-ratelimit-limit-requests" in headers:
openai_headers["x-ratelimit-limit-requests"] = headers[
"x-ratelimit-limit-requests"
]
if "x-ratelimit-remaining-requests" in headers:
openai_headers["x-ratelimit-remaining-requests"] = headers[
"x-ratelimit-remaining-requests"
]
if "x-ratelimit-limit-tokens" in headers:
openai_headers["x-ratelimit-limit-tokens"] = headers["x-ratelimit-limit-tokens"]
if "x-ratelimit-remaining-tokens" in headers:
openai_headers["x-ratelimit-remaining-tokens"] = headers[
"x-ratelimit-remaining-tokens"
]
llm_response_headers = {
"{}-{}".format("llm_provider", k): v for k, v in headers.items()
}
return {**llm_response_headers, **openai_headers}
def get_azure_ad_token_from_entra_id(
tenant_id: str,
client_id: str,
client_secret: str,
scope: str = "https://cognitiveservices.azure.com/.default",
) -> Callable[[], str]:
"""
Get Azure AD token provider from `client_id`, `client_secret`, and `tenant_id`
Args:
tenant_id: str
client_id: str
client_secret: str
scope: str
Returns:
callable that returns a bearer token.
"""
from azure.identity import ClientSecretCredential, get_bearer_token_provider
verbose_logger.debug("Getting Azure AD Token from Entra ID")
if tenant_id.startswith("os.environ/"):
_tenant_id = get_secret_str(tenant_id)
else:
_tenant_id = tenant_id
if client_id.startswith("os.environ/"):
_client_id = get_secret_str(client_id)
else:
_client_id = client_id
if client_secret.startswith("os.environ/"):
_client_secret = get_secret_str(client_secret)
else:
_client_secret = client_secret
verbose_logger.debug(
"tenant_id %s, client_id %s, client_secret %s",
_tenant_id,
_client_id,
_client_secret,
)
if _tenant_id is None or _client_id is None or _client_secret is None:
raise ValueError("tenant_id, client_id, and client_secret must be provided")
credential = ClientSecretCredential(_tenant_id, _client_id, _client_secret)
verbose_logger.debug("credential %s", credential)
token_provider = get_bearer_token_provider(credential, scope)
verbose_logger.debug("token_provider %s", token_provider)
return token_provider
def get_azure_ad_token_from_username_password(
client_id: str,
azure_username: str,
azure_password: str,
scope: str = "https://cognitiveservices.azure.com/.default",
) -> Callable[[], str]:
"""
Get Azure AD token provider from `client_id`, `azure_username`, and `azure_password`
Args:
client_id: str
azure_username: str
azure_password: str
scope: str
Returns:
callable that returns a bearer token.
"""
from azure.identity import UsernamePasswordCredential, get_bearer_token_provider
verbose_logger.debug(
"client_id %s, azure_username %s, azure_password %s",
client_id,
azure_username,
azure_password,
)
credential = UsernamePasswordCredential(
client_id=client_id,
username=azure_username,
password=azure_password,
)
verbose_logger.debug("credential %s", credential)
token_provider = get_bearer_token_provider(credential, scope)
verbose_logger.debug("token_provider %s", token_provider)
return token_provider
def get_azure_ad_token_from_oidc(
azure_ad_token: str,
azure_client_id: Optional[str],
azure_tenant_id: Optional[str],
) -> str:
"""
Get Azure AD token from OIDC token
Args:
azure_ad_token: str
azure_client_id: Optional[str]
azure_tenant_id: Optional[str]
Returns:
`azure_ad_token_access_token` - str
"""
azure_authority_host = os.getenv(
"AZURE_AUTHORITY_HOST", "https://login.microsoftonline.com"
)
azure_client_id = azure_client_id or os.getenv("AZURE_CLIENT_ID")
azure_tenant_id = azure_tenant_id or os.getenv("AZURE_TENANT_ID")
if azure_client_id is None or azure_tenant_id is None:
raise AzureOpenAIError(
status_code=422,
message="AZURE_CLIENT_ID and AZURE_TENANT_ID must be set",
)
oidc_token = get_secret_str(azure_ad_token)
if oidc_token is None:
raise AzureOpenAIError(
status_code=401,
message="OIDC token could not be retrieved from secret manager.",
)
azure_ad_token_cache_key = json.dumps(
{
"azure_client_id": azure_client_id,
"azure_tenant_id": azure_tenant_id,
"azure_authority_host": azure_authority_host,
"oidc_token": oidc_token,
}
)
azure_ad_token_access_token = azure_ad_cache.get_cache(azure_ad_token_cache_key)
if azure_ad_token_access_token is not None:
return azure_ad_token_access_token
client = litellm.module_level_client
req_token = client.post(
f"{azure_authority_host}/{azure_tenant_id}/oauth2/v2.0/token",
data={
"client_id": azure_client_id,
"grant_type": "client_credentials",
"scope": "https://cognitiveservices.azure.com/.default",
"client_assertion_type": "urn:ietf:params:oauth:client-assertion-type:jwt-bearer",
"client_assertion": oidc_token,
},
)
if req_token.status_code != 200:
raise AzureOpenAIError(
status_code=req_token.status_code,
message=req_token.text,
)
azure_ad_token_json = req_token.json()
azure_ad_token_access_token = azure_ad_token_json.get("access_token", None)
azure_ad_token_expires_in = azure_ad_token_json.get("expires_in", None)
if azure_ad_token_access_token is None:
raise AzureOpenAIError(
status_code=422, message="Azure AD Token access_token not returned"
)
if azure_ad_token_expires_in is None:
raise AzureOpenAIError(
status_code=422, message="Azure AD Token expires_in not returned"
)
azure_ad_cache.set_cache(
key=azure_ad_token_cache_key,
value=azure_ad_token_access_token,
ttl=azure_ad_token_expires_in,
)
return azure_ad_token_access_token
def select_azure_base_url_or_endpoint(azure_client_params: dict):
azure_endpoint = azure_client_params.get("azure_endpoint", None)
if azure_endpoint is not None:
# see : https://github.com/openai/openai-python/blob/3d61ed42aba652b547029095a7eb269ad4e1e957/src/openai/lib/azure.py#L192
if "/openai/deployments" in azure_endpoint:
# this is base_url, not an azure_endpoint
azure_client_params["base_url"] = azure_endpoint
azure_client_params.pop("azure_endpoint")
return azure_client_params
class BaseAzureLLM(BaseOpenAILLM):
def get_azure_openai_client(
self,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
litellm_params: Optional[dict] = None,
_is_async: bool = False,
model: Optional[str] = None,
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
client_initialization_params: dict = locals()
if client is None:
cached_client = self.get_cached_openai_client(
client_initialization_params=client_initialization_params,
client_type="azure",
)
if cached_client:
if isinstance(cached_client, AzureOpenAI) or isinstance(
cached_client, AsyncAzureOpenAI
):
return cached_client
azure_client_params = self.initialize_azure_sdk_client(
litellm_params=litellm_params or {},
api_key=api_key,
api_base=api_base,
model_name=model,
api_version=api_version,
is_async=_is_async,
)
if _is_async is True:
openai_client = AsyncAzureOpenAI(**azure_client_params)
else:
openai_client = AzureOpenAI(**azure_client_params) # type: ignore
else:
openai_client = client
if api_version is not None and isinstance(
openai_client._custom_query, dict
):
# set api_version to version passed by user
openai_client._custom_query.setdefault("api-version", api_version)
# save client in-memory cache
self.set_cached_openai_client(
openai_client=openai_client,
client_initialization_params=client_initialization_params,
client_type="azure",
)
return openai_client
def initialize_azure_sdk_client(
self,
litellm_params: dict,
api_key: Optional[str],
api_base: Optional[str],
model_name: Optional[str],
api_version: Optional[str],
is_async: bool,
) -> dict:
azure_ad_token_provider: Optional[Callable[[], str]] = None
# If we have api_key, then we have higher priority
azure_ad_token = litellm_params.get("azure_ad_token")
tenant_id = litellm_params.get("tenant_id", os.getenv("AZURE_TENANT_ID"))
client_id = litellm_params.get("client_id", os.getenv("AZURE_CLIENT_ID"))
client_secret = litellm_params.get(
"client_secret", os.getenv("AZURE_CLIENT_SECRET")
)
azure_username = litellm_params.get(
"azure_username", os.getenv("AZURE_USERNAME")
)
azure_password = litellm_params.get(
"azure_password", os.getenv("AZURE_PASSWORD")
)
max_retries = litellm_params.get("max_retries")
timeout = litellm_params.get("timeout")
if not api_key and tenant_id and client_id and client_secret:
verbose_logger.debug(
"Using Azure AD Token Provider from Entra ID for Azure Auth"
)
azure_ad_token_provider = get_azure_ad_token_from_entra_id(
tenant_id=tenant_id,
client_id=client_id,
client_secret=client_secret,
)
if azure_username and azure_password and client_id:
verbose_logger.debug("Using Azure Username and Password for Azure Auth")
azure_ad_token_provider = get_azure_ad_token_from_username_password(
azure_username=azure_username,
azure_password=azure_password,
client_id=client_id,
)
if azure_ad_token is not None and azure_ad_token.startswith("oidc/"):
verbose_logger.debug("Using Azure OIDC Token for Azure Auth")
azure_ad_token = get_azure_ad_token_from_oidc(
azure_ad_token=azure_ad_token,
azure_client_id=client_id,
azure_tenant_id=tenant_id,
)
elif (
not api_key
and azure_ad_token_provider is None
and litellm.enable_azure_ad_token_refresh is True
):
verbose_logger.debug(
"Using Azure AD token provider based on Service Principal with Secret workflow for Azure Auth"
)
try:
azure_ad_token_provider = get_azure_ad_token_provider()
except ValueError:
verbose_logger.debug("Azure AD Token Provider could not be used.")
if api_version is None:
api_version = os.getenv(
"AZURE_API_VERSION", litellm.AZURE_DEFAULT_API_VERSION
)
_api_key = api_key
if _api_key is not None and isinstance(_api_key, str):
# only show first 5 chars of api_key
_api_key = _api_key[:8] + "*" * 15
verbose_logger.debug(
f"Initializing Azure OpenAI Client for {model_name}, Api Base: {str(api_base)}, Api Key:{_api_key}"
)
azure_client_params = {
"api_key": api_key,
"azure_endpoint": api_base,
"api_version": api_version,
"azure_ad_token": azure_ad_token,
"azure_ad_token_provider": azure_ad_token_provider,
}
# init http client + SSL Verification settings
if is_async is True:
azure_client_params["http_client"] = self._get_async_http_client()
else:
azure_client_params["http_client"] = self._get_sync_http_client()
if max_retries is not None:
azure_client_params["max_retries"] = max_retries
if timeout is not None:
azure_client_params["timeout"] = timeout
if azure_ad_token_provider is not None:
azure_client_params["azure_ad_token_provider"] = azure_ad_token_provider
# this decides if we should set azure_endpoint or base_url on Azure OpenAI Client
# required to support GPT-4 vision enhancements, since base_url needs to be set on Azure OpenAI Client
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
return azure_client_params
def _init_azure_client_for_cloudflare_ai_gateway(
self,
api_base: str,
model: str,
api_version: str,
max_retries: int,
timeout: Union[float, httpx.Timeout],
litellm_params: dict,
api_key: Optional[str],
azure_ad_token: Optional[str],
azure_ad_token_provider: Optional[Callable[[], str]],
acompletion: bool,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
) -> Union[AzureOpenAI, AsyncAzureOpenAI]:
## build base url - assume api base includes resource name
tenant_id = litellm_params.get("tenant_id", os.getenv("AZURE_TENANT_ID"))
client_id = litellm_params.get("client_id", os.getenv("AZURE_CLIENT_ID"))
if client is None:
if not api_base.endswith("/"):
api_base += "/"
api_base += f"{model}"
azure_client_params: Dict[str, Any] = {
"api_version": api_version,
"base_url": f"{api_base}",
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(
azure_ad_token=azure_ad_token,
azure_client_id=client_id,
azure_tenant_id=tenant_id,
)
azure_client_params["azure_ad_token"] = azure_ad_token
if azure_ad_token_provider is not None:
azure_client_params["azure_ad_token_provider"] = azure_ad_token_provider
if acompletion is True:
client = AsyncAzureOpenAI(**azure_client_params) # type: ignore
else:
client = AzureOpenAI(**azure_client_params) # type: ignore
return client