Spaces:
Sleeping
Sleeping
""" | |
Transformation logic from OpenAI /v1/embeddings format to Azure AI Cohere's /v1/embed. | |
Why separate file? Make it easy to see how transformation works | |
Convers | |
- Cohere request format | |
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html | |
""" | |
from typing import List, Optional, Tuple | |
from litellm.types.llms.azure_ai import ImageEmbeddingInput, ImageEmbeddingRequest | |
from litellm.types.llms.openai import EmbeddingCreateParams | |
from litellm.types.utils import EmbeddingResponse, Usage | |
from litellm.utils import is_base64_encoded | |
class AzureAICohereConfig: | |
def __init__(self) -> None: | |
pass | |
def _map_azure_model_group(self, model: str) -> str: | |
if model == "offer-cohere-embed-multili-paygo": | |
return "Cohere-embed-v3-multilingual" | |
elif model == "offer-cohere-embed-english-paygo": | |
return "Cohere-embed-v3-english" | |
return model | |
def _transform_request_image_embeddings( | |
self, input: List[str], optional_params: dict | |
) -> ImageEmbeddingRequest: | |
""" | |
Assume all str in list is base64 encoded string | |
""" | |
image_input: List[ImageEmbeddingInput] = [] | |
for i in input: | |
embedding_input = ImageEmbeddingInput(image=i) | |
image_input.append(embedding_input) | |
return ImageEmbeddingRequest(input=image_input, **optional_params) | |
def _transform_request( | |
self, input: List[str], optional_params: dict, model: str | |
) -> Tuple[ImageEmbeddingRequest, EmbeddingCreateParams, List[int]]: | |
""" | |
Return the list of input to `/image/embeddings`, `/v1/embeddings`, list of image_embedding_idx for recombination | |
""" | |
image_embeddings: List[str] = [] | |
image_embedding_idx: List[int] = [] | |
for idx, i in enumerate(input): | |
""" | |
- is base64 -> route to image embeddings | |
- is ImageEmbeddingInput -> route to image embeddings | |
- else -> route to `/v1/embeddings` | |
""" | |
if is_base64_encoded(i): | |
image_embeddings.append(i) | |
image_embedding_idx.append(idx) | |
## REMOVE IMAGE EMBEDDINGS FROM input list | |
filtered_input = [ | |
item for idx, item in enumerate(input) if idx not in image_embedding_idx | |
] | |
v1_embeddings_request = EmbeddingCreateParams( | |
input=filtered_input, model=model, **optional_params | |
) | |
image_embeddings_request = self._transform_request_image_embeddings( | |
input=image_embeddings, optional_params=optional_params | |
) | |
return image_embeddings_request, v1_embeddings_request, image_embedding_idx | |
def _transform_response(self, response: EmbeddingResponse) -> EmbeddingResponse: | |
additional_headers: Optional[dict] = response._hidden_params.get( | |
"additional_headers" | |
) | |
if additional_headers: | |
# CALCULATE USAGE | |
input_tokens: Optional[str] = additional_headers.get( | |
"llm_provider-num_tokens" | |
) | |
if input_tokens: | |
if response.usage: | |
response.usage.prompt_tokens = int(input_tokens) | |
else: | |
response.usage = Usage(prompt_tokens=int(input_tokens)) | |
# SET MODEL | |
base_model: Optional[str] = additional_headers.get( | |
"llm_provider-azureml-model-group" | |
) | |
if base_model: | |
response.model = self._map_azure_model_group(base_model) | |
return response | |