Spaces:
Sleeping
Sleeping
""" | |
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan multimodal /invoke format. | |
Why separate file? Make it easy to see how transformation works | |
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html | |
""" | |
from typing import List | |
from litellm.types.llms.bedrock import ( | |
AmazonTitanMultimodalEmbeddingConfig, | |
AmazonTitanMultimodalEmbeddingRequest, | |
AmazonTitanMultimodalEmbeddingResponse, | |
) | |
from litellm.types.utils import Embedding, EmbeddingResponse, Usage | |
from litellm.utils import get_base64_str, is_base64_encoded | |
class AmazonTitanMultimodalEmbeddingG1Config: | |
""" | |
Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html | |
""" | |
def __init__(self) -> None: | |
pass | |
def get_supported_openai_params(self) -> List[str]: | |
return ["dimensions"] | |
def map_openai_params( | |
self, non_default_params: dict, optional_params: dict | |
) -> dict: | |
for k, v in non_default_params.items(): | |
if k == "dimensions": | |
optional_params[ | |
"embeddingConfig" | |
] = AmazonTitanMultimodalEmbeddingConfig(outputEmbeddingLength=v) | |
return optional_params | |
def _transform_request( | |
self, input: str, inference_params: dict | |
) -> AmazonTitanMultimodalEmbeddingRequest: | |
## check if b64 encoded str or not ## | |
is_encoded = is_base64_encoded(input) | |
if is_encoded: # check if string is b64 encoded image or not | |
b64_str = get_base64_str(input) | |
transformed_request = AmazonTitanMultimodalEmbeddingRequest( | |
inputImage=b64_str | |
) | |
else: | |
transformed_request = AmazonTitanMultimodalEmbeddingRequest(inputText=input) | |
for k, v in inference_params.items(): | |
transformed_request[k] = v # type: ignore | |
return transformed_request | |
def _transform_response( | |
self, response_list: List[dict], model: str | |
) -> EmbeddingResponse: | |
total_prompt_tokens = 0 | |
transformed_responses: List[Embedding] = [] | |
for index, response in enumerate(response_list): | |
_parsed_response = AmazonTitanMultimodalEmbeddingResponse(**response) # type: ignore | |
transformed_responses.append( | |
Embedding( | |
embedding=_parsed_response["embedding"], | |
index=index, | |
object="embedding", | |
) | |
) | |
total_prompt_tokens += _parsed_response["inputTextTokenCount"] | |
usage = Usage( | |
prompt_tokens=total_prompt_tokens, | |
completion_tokens=0, | |
total_tokens=total_prompt_tokens, | |
) | |
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses) | |