Spaces:
Sleeping
Sleeping
""" | |
Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format. | |
Why separate file? Make it easy to see how transformation works | |
Convers | |
- v3 embedding models | |
- v2 embedding models | |
Docs - https://docs.cohere.com/v2/reference/embed | |
""" | |
from typing import Any, List, Optional, Union | |
import httpx | |
from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
from litellm.types.llms.bedrock import ( | |
CohereEmbeddingRequest, | |
CohereEmbeddingRequestWithModel, | |
) | |
from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage | |
from litellm.utils import is_base64_encoded | |
class CohereEmbeddingConfig: | |
""" | |
Reference: https://docs.cohere.com/v2/reference/embed | |
""" | |
def __init__(self) -> None: | |
pass | |
def get_supported_openai_params(self) -> List[str]: | |
return ["encoding_format"] | |
def map_openai_params( | |
self, non_default_params: dict, optional_params: dict | |
) -> dict: | |
for k, v in non_default_params.items(): | |
if k == "encoding_format": | |
optional_params["embedding_types"] = v | |
return optional_params | |
def _is_v3_model(self, model: str) -> bool: | |
return "3" in model | |
def _transform_request( | |
self, model: str, input: List[str], inference_params: dict | |
) -> CohereEmbeddingRequestWithModel: | |
is_encoded = False | |
for input_str in input: | |
is_encoded = is_base64_encoded(input_str) | |
if is_encoded: # check if string is b64 encoded image or not | |
transformed_request = CohereEmbeddingRequestWithModel( | |
model=model, | |
images=input, | |
input_type="image", | |
) | |
else: | |
transformed_request = CohereEmbeddingRequestWithModel( | |
model=model, | |
texts=input, | |
input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE, | |
) | |
for k, v in inference_params.items(): | |
transformed_request[k] = v # type: ignore | |
return transformed_request | |
def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage: | |
input_tokens = 0 | |
text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens") | |
image_tokens: Optional[int] = meta.get("billed_units", {}).get("images") | |
prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None | |
if image_tokens is None and text_tokens is None: | |
for text in input: | |
input_tokens += len(encoding.encode(text)) | |
else: | |
prompt_tokens_details = PromptTokensDetailsWrapper( | |
image_tokens=image_tokens, | |
text_tokens=text_tokens, | |
) | |
if image_tokens: | |
input_tokens += image_tokens | |
if text_tokens: | |
input_tokens += text_tokens | |
return Usage( | |
prompt_tokens=input_tokens, | |
completion_tokens=0, | |
total_tokens=input_tokens, | |
prompt_tokens_details=prompt_tokens_details, | |
) | |
def _transform_response( | |
self, | |
response: httpx.Response, | |
api_key: Optional[str], | |
logging_obj: LiteLLMLoggingObj, | |
data: Union[dict, CohereEmbeddingRequest], | |
model_response: EmbeddingResponse, | |
model: str, | |
encoding: Any, | |
input: list, | |
) -> EmbeddingResponse: | |
response_json = response.json() | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=response_json, | |
) | |
""" | |
response | |
{ | |
'object': "list", | |
'data': [ | |
] | |
'model', | |
'usage' | |
} | |
""" | |
embeddings = response_json["embeddings"] | |
output_data = [] | |
for idx, embedding in enumerate(embeddings): | |
output_data.append( | |
{"object": "embedding", "index": idx, "embedding": embedding} | |
) | |
model_response.object = "list" | |
model_response.data = output_data | |
model_response.model = model | |
input_tokens = 0 | |
for text in input: | |
input_tokens += len(encoding.encode(text)) | |
setattr( | |
model_response, | |
"usage", | |
self._calculate_usage(input, encoding, response_json.get("meta", {})), | |
) | |
return model_response | |