Spaces:
Sleeping
Sleeping
import json | |
import uuid | |
from typing import Any, List, Literal, Optional, Tuple, Union, cast | |
import httpx | |
import litellm | |
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
from litellm.litellm_core_utils.llm_response_utils.get_headers import ( | |
get_response_headers, | |
) | |
from litellm.secret_managers.main import get_secret_str | |
from litellm.types.llms.openai import ( | |
AllMessageValues, | |
ChatCompletionImageObject, | |
ChatCompletionToolParam, | |
OpenAIChatCompletionToolParam, | |
) | |
from litellm.types.utils import ( | |
ChatCompletionMessageToolCall, | |
Choices, | |
Function, | |
Message, | |
ModelResponse, | |
ProviderSpecificModelInfo, | |
) | |
from ...openai.chat.gpt_transformation import OpenAIGPTConfig | |
from ..common_utils import FireworksAIException | |
class FireworksAIConfig(OpenAIGPTConfig): | |
""" | |
Reference: https://docs.fireworks.ai/api-reference/post-chatcompletions | |
The class `FireworksAIConfig` provides configuration for the Fireworks's Chat Completions API interface. Below are the parameters: | |
""" | |
tools: Optional[list] = None | |
tool_choice: Optional[Union[str, dict]] = None | |
max_tokens: Optional[int] = None | |
temperature: Optional[int] = None | |
top_p: Optional[int] = None | |
top_k: Optional[int] = None | |
frequency_penalty: Optional[int] = None | |
presence_penalty: Optional[int] = None | |
n: Optional[int] = None | |
stop: Optional[Union[str, list]] = None | |
response_format: Optional[dict] = None | |
user: Optional[str] = None | |
logprobs: Optional[int] = None | |
# Non OpenAI parameters - Fireworks AI only params | |
prompt_truncate_length: Optional[int] = None | |
context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None | |
def __init__( | |
self, | |
tools: Optional[list] = None, | |
tool_choice: Optional[Union[str, dict]] = None, | |
max_tokens: Optional[int] = None, | |
temperature: Optional[int] = None, | |
top_p: Optional[int] = None, | |
top_k: Optional[int] = None, | |
frequency_penalty: Optional[int] = None, | |
presence_penalty: Optional[int] = None, | |
n: Optional[int] = None, | |
stop: Optional[Union[str, list]] = None, | |
response_format: Optional[dict] = None, | |
user: Optional[str] = None, | |
logprobs: Optional[int] = None, | |
prompt_truncate_length: Optional[int] = None, | |
context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return super().get_config() | |
def get_supported_openai_params(self, model: str): | |
return [ | |
"stream", | |
"tools", | |
"tool_choice", | |
"max_completion_tokens", | |
"max_tokens", | |
"temperature", | |
"top_p", | |
"top_k", | |
"frequency_penalty", | |
"presence_penalty", | |
"n", | |
"stop", | |
"response_format", | |
"user", | |
"logprobs", | |
"prompt_truncate_length", | |
"context_length_exceeded_behavior", | |
] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
supported_openai_params = self.get_supported_openai_params(model=model) | |
is_tools_set = any( | |
param == "tools" and value is not None | |
for param, value in non_default_params.items() | |
) | |
for param, value in non_default_params.items(): | |
if param == "tool_choice": | |
if value == "required": | |
# relevant issue: https://github.com/BerriAI/litellm/issues/4416 | |
optional_params["tool_choice"] = "any" | |
else: | |
# pass through the value of tool choice | |
optional_params["tool_choice"] = value | |
elif param == "response_format": | |
if ( | |
is_tools_set | |
): # fireworks ai doesn't support tools and response_format together | |
optional_params = self._add_response_format_to_tools( | |
optional_params=optional_params, | |
value=value, | |
is_response_format_supported=False, | |
enforce_tool_choice=False, # tools and response_format are both set, don't enforce tool_choice | |
) | |
elif "json_schema" in value: | |
optional_params["response_format"] = { | |
"type": "json_object", | |
"schema": value["json_schema"]["schema"], | |
} | |
else: | |
optional_params["response_format"] = value | |
elif param == "max_completion_tokens": | |
optional_params["max_tokens"] = value | |
elif param in supported_openai_params: | |
if value is not None: | |
optional_params[param] = value | |
return optional_params | |
def _add_transform_inline_image_block( | |
self, | |
content: ChatCompletionImageObject, | |
model: str, | |
disable_add_transform_inline_image_block: Optional[bool], | |
) -> ChatCompletionImageObject: | |
""" | |
Add transform_inline to the image_url (allows non-vision models to parse documents/images/etc.) | |
- ignore if model is a vision model | |
- ignore if user has disabled this feature | |
""" | |
if ( | |
"vision" in model or disable_add_transform_inline_image_block | |
): # allow user to toggle this feature. | |
return content | |
if isinstance(content["image_url"], str): | |
content["image_url"] = f"{content['image_url']}#transform=inline" | |
elif isinstance(content["image_url"], dict): | |
content["image_url"][ | |
"url" | |
] = f"{content['image_url']['url']}#transform=inline" | |
return content | |
def _transform_tools( | |
self, tools: List[OpenAIChatCompletionToolParam] | |
) -> List[OpenAIChatCompletionToolParam]: | |
for tool in tools: | |
if tool.get("type") == "function": | |
tool["function"].pop("strict", None) | |
return tools | |
def _transform_messages_helper( | |
self, messages: List[AllMessageValues], model: str, litellm_params: dict | |
) -> List[AllMessageValues]: | |
""" | |
Add 'transform=inline' to the url of the image_url | |
""" | |
disable_add_transform_inline_image_block = cast( | |
Optional[bool], | |
litellm_params.get("disable_add_transform_inline_image_block") | |
or litellm.disable_add_transform_inline_image_block, | |
) | |
for message in messages: | |
if message["role"] == "user": | |
_message_content = message.get("content") | |
if _message_content is not None and isinstance(_message_content, list): | |
for content in _message_content: | |
if content["type"] == "image_url": | |
content = self._add_transform_inline_image_block( | |
content=content, | |
model=model, | |
disable_add_transform_inline_image_block=disable_add_transform_inline_image_block, | |
) | |
return messages | |
def get_provider_info(self, model: str) -> ProviderSpecificModelInfo: | |
provider_specific_model_info = ProviderSpecificModelInfo( | |
supports_function_calling=True, | |
supports_prompt_caching=True, # https://docs.fireworks.ai/guides/prompt-caching | |
supports_pdf_input=True, # via document inlining | |
supports_vision=True, # via document inlining | |
) | |
return provider_specific_model_info | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
if not model.startswith("accounts/"): | |
model = f"accounts/fireworks/models/{model}" | |
messages = self._transform_messages_helper( | |
messages=messages, model=model, litellm_params=litellm_params | |
) | |
if "tools" in optional_params and optional_params["tools"] is not None: | |
tools = self._transform_tools(tools=optional_params["tools"]) | |
optional_params["tools"] = tools | |
return super().transform_request( | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
headers=headers, | |
) | |
def _handle_message_content_with_tool_calls( | |
self, | |
message: Message, | |
tool_calls: Optional[List[ChatCompletionToolParam]], | |
) -> Message: | |
""" | |
Fireworks AI sends tool calls in the content field instead of tool_calls | |
Relevant Issue: https://github.com/BerriAI/litellm/issues/7209#issuecomment-2813208780 | |
""" | |
if ( | |
tool_calls is not None | |
and message.content is not None | |
and message.tool_calls is None | |
): | |
try: | |
function = Function(**json.loads(message.content)) | |
if function.name != RESPONSE_FORMAT_TOOL_NAME and function.name in [ | |
tool["function"]["name"] for tool in tool_calls | |
]: | |
tool_call = ChatCompletionMessageToolCall( | |
function=function, id=str(uuid.uuid4()), type="function" | |
) | |
message.tool_calls = [tool_call] | |
message.content = None | |
except Exception: | |
pass | |
return message | |
def transform_response( | |
self, | |
model: str, | |
raw_response: httpx.Response, | |
model_response: ModelResponse, | |
logging_obj: LiteLLMLoggingObj, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: Any, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
## LOGGING | |
logging_obj.post_call( | |
input=messages, | |
api_key=api_key, | |
original_response=raw_response.text, | |
additional_args={"complete_input_dict": request_data}, | |
) | |
## RESPONSE OBJECT | |
try: | |
completion_response = raw_response.json() | |
except Exception as e: | |
response_headers = getattr(raw_response, "headers", None) | |
raise FireworksAIException( | |
message="Unable to get json response - {}, Original Response: {}".format( | |
str(e), raw_response.text | |
), | |
status_code=raw_response.status_code, | |
headers=response_headers, | |
) | |
raw_response_headers = dict(raw_response.headers) | |
additional_headers = get_response_headers(raw_response_headers) | |
response = ModelResponse(**completion_response) | |
if response.model is not None: | |
response.model = "fireworks_ai/" + response.model | |
## FIREWORKS AI sends tool calls in the content field instead of tool_calls | |
for choice in response.choices: | |
cast( | |
Choices, choice | |
).message = self._handle_message_content_with_tool_calls( | |
message=cast(Choices, choice).message, | |
tool_calls=optional_params.get("tools", None), | |
) | |
response._hidden_params = {"additional_headers": additional_headers} | |
return response | |
def _get_openai_compatible_provider_info( | |
self, api_base: Optional[str], api_key: Optional[str] | |
) -> Tuple[Optional[str], Optional[str]]: | |
api_base = ( | |
api_base | |
or get_secret_str("FIREWORKS_API_BASE") | |
or "https://api.fireworks.ai/inference/v1" | |
) # type: ignore | |
dynamic_api_key = api_key or ( | |
get_secret_str("FIREWORKS_API_KEY") | |
or get_secret_str("FIREWORKS_AI_API_KEY") | |
or get_secret_str("FIREWORKSAI_API_KEY") | |
or get_secret_str("FIREWORKS_AI_TOKEN") | |
) | |
return api_base, dynamic_api_key | |
def get_models(self, api_key: Optional[str] = None, api_base: Optional[str] = None): | |
api_base, api_key = self._get_openai_compatible_provider_info( | |
api_base=api_base, api_key=api_key | |
) | |
if api_base is None or api_key is None: | |
raise ValueError( | |
"FIREWORKS_API_BASE or FIREWORKS_API_KEY is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint." | |
) | |
account_id = get_secret_str("FIREWORKS_ACCOUNT_ID") | |
if account_id is None: | |
raise ValueError( | |
"FIREWORKS_ACCOUNT_ID is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint." | |
) | |
response = litellm.module_level_client.get( | |
url=f"{api_base}/v1/accounts/{account_id}/models", | |
headers={"Authorization": f"Bearer {api_key}"}, | |
) | |
if response.status_code != 200: | |
raise ValueError( | |
f"Failed to fetch models from Fireworks AI. Status code: {response.status_code}, Response: {response.json()}" | |
) | |
models = response.json()["models"] | |
return ["fireworks_ai/" + model["name"] for model in models] | |
def get_api_key(api_key: Optional[str] = None) -> Optional[str]: | |
return api_key or ( | |
get_secret_str("FIREWORKS_API_KEY") | |
or get_secret_str("FIREWORKS_AI_API_KEY") | |
or get_secret_str("FIREWORKSAI_API_KEY") | |
or get_secret_str("FIREWORKS_AI_TOKEN") | |
) | |