Spaces:
Sleeping
Sleeping
import json | |
from typing import Callable, Optional, Union | |
import litellm | |
from litellm.llms.custom_httpx.http_handler import ( | |
AsyncHTTPHandler, | |
HTTPHandler, | |
_get_httpx_client, | |
) | |
from litellm.utils import ModelResponse | |
from .transformation import NLPCloudConfig | |
nlp_config = NLPCloudConfig() | |
def completion( | |
model: str, | |
messages: list, | |
api_base: str, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
api_key, | |
logging_obj, | |
optional_params: dict, | |
litellm_params: dict, | |
logger_fn=None, | |
default_max_tokens_to_sample=None, | |
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, | |
headers={}, | |
): | |
headers = nlp_config.validate_environment( | |
api_key=api_key, | |
headers=headers, | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
) | |
## Load Config | |
config = litellm.NLPCloudConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
completion_url_fragment_1 = api_base | |
completion_url_fragment_2 = "/generation" | |
model = model | |
completion_url = completion_url_fragment_1 + model + completion_url_fragment_2 | |
data = nlp_config.transform_request( | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
headers=headers, | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=None, | |
api_key=api_key, | |
additional_args={ | |
"complete_input_dict": data, | |
"headers": headers, | |
"api_base": completion_url, | |
}, | |
) | |
## COMPLETION CALL | |
if client is None or not isinstance(client, HTTPHandler): | |
client = _get_httpx_client() | |
response = client.post( | |
completion_url, | |
headers=headers, | |
data=json.dumps(data), | |
stream=optional_params["stream"] if "stream" in optional_params else False, | |
) | |
if "stream" in optional_params and optional_params["stream"] is True: | |
return clean_and_iterate_chunks(response) | |
else: | |
return nlp_config.transform_response( | |
model=model, | |
raw_response=response, | |
model_response=model_response, | |
logging_obj=logging_obj, | |
api_key=api_key, | |
request_data=data, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
encoding=encoding, | |
) | |
# def clean_and_iterate_chunks(response): | |
# def process_chunk(chunk): | |
# print(f"received chunk: {chunk}") | |
# cleaned_chunk = chunk.decode("utf-8") | |
# # Perform further processing based on your needs | |
# return cleaned_chunk | |
# for line in response.iter_lines(): | |
# if line: | |
# yield process_chunk(line) | |
def clean_and_iterate_chunks(response): | |
buffer = b"" | |
for chunk in response.iter_content(chunk_size=1024): | |
if not chunk: | |
break | |
buffer += chunk | |
while b"\x00" in buffer: | |
buffer = buffer.replace(b"\x00", b"") | |
yield buffer.decode("utf-8") | |
buffer = b"" | |
# No more data expected, yield any remaining data in the buffer | |
if buffer: | |
yield buffer.decode("utf-8") | |
def embedding(): | |
# logic for parsing in - calling - parsing out model embedding calls | |
pass | |