Spaces:
Sleeping
Sleeping
import json | |
from typing import Callable, List, Optional, Union | |
from openai import AsyncOpenAI, OpenAI | |
import litellm | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper | |
from litellm.llms.base import BaseLLM | |
from litellm.types.llms.openai import AllMessageValues, OpenAITextCompletionUserMessage | |
from litellm.types.utils import LlmProviders, ModelResponse, TextCompletionResponse | |
from litellm.utils import ProviderConfigManager | |
from ..common_utils import OpenAIError | |
from .transformation import OpenAITextCompletionConfig | |
class OpenAITextCompletion(BaseLLM): | |
openai_text_completion_global_config = OpenAITextCompletionConfig() | |
def __init__(self) -> None: | |
super().__init__() | |
def validate_environment(self, api_key): | |
headers = { | |
"content-type": "application/json", | |
} | |
if api_key: | |
headers["Authorization"] = f"Bearer {api_key}" | |
return headers | |
def completion( | |
self, | |
model_response: ModelResponse, | |
api_key: str, | |
model: str, | |
messages: Union[List[AllMessageValues], List[OpenAITextCompletionUserMessage]], | |
timeout: float, | |
custom_llm_provider: str, | |
logging_obj: LiteLLMLoggingObj, | |
optional_params: dict, | |
print_verbose: Optional[Callable] = None, | |
api_base: Optional[str] = None, | |
acompletion: bool = False, | |
litellm_params=None, | |
logger_fn=None, | |
client=None, | |
organization: Optional[str] = None, | |
headers: Optional[dict] = None, | |
): | |
try: | |
if headers is None: | |
headers = self.validate_environment(api_key=api_key) | |
if model is None or messages is None: | |
raise OpenAIError(status_code=422, message="Missing model or messages") | |
# don't send max retries to the api, if set | |
provider_config = ProviderConfigManager.get_provider_text_completion_config( | |
model=model, | |
provider=LlmProviders(custom_llm_provider), | |
) | |
data = provider_config.transform_text_completion_request( | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
headers=headers, | |
) | |
max_retries = data.pop("max_retries", 2) | |
## LOGGING | |
logging_obj.pre_call( | |
input=messages, | |
api_key=api_key, | |
additional_args={ | |
"headers": headers, | |
"api_base": api_base, | |
"complete_input_dict": data, | |
}, | |
) | |
if acompletion is True: | |
if optional_params.get("stream", False): | |
return self.async_streaming( | |
logging_obj=logging_obj, | |
api_base=api_base, | |
api_key=api_key, | |
data=data, | |
headers=headers, | |
model_response=model_response, | |
model=model, | |
timeout=timeout, | |
max_retries=max_retries, | |
client=client, | |
organization=organization, | |
) | |
else: | |
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, api_key=api_key, logging_obj=logging_obj, model=model, timeout=timeout, max_retries=max_retries, organization=organization, client=client) # type: ignore | |
elif optional_params.get("stream", False): | |
return self.streaming( | |
logging_obj=logging_obj, | |
api_base=api_base, | |
api_key=api_key, | |
data=data, | |
headers=headers, | |
model_response=model_response, | |
model=model, | |
timeout=timeout, | |
max_retries=max_retries, # type: ignore | |
client=client, | |
organization=organization, | |
) | |
else: | |
if client is None: | |
openai_client = OpenAI( | |
api_key=api_key, | |
base_url=api_base, | |
http_client=litellm.client_session, | |
timeout=timeout, | |
max_retries=max_retries, # type: ignore | |
organization=organization, | |
) | |
else: | |
openai_client = client | |
raw_response = openai_client.completions.with_raw_response.create(**data) # type: ignore | |
response = raw_response.parse() | |
response_json = response.model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
api_key=api_key, | |
original_response=response_json, | |
additional_args={ | |
"headers": headers, | |
"api_base": api_base, | |
}, | |
) | |
## RESPONSE OBJECT | |
return TextCompletionResponse(**response_json) | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_text = getattr(e, "text", str(e)) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise OpenAIError( | |
status_code=status_code, message=error_text, headers=error_headers | |
) | |
async def acompletion( | |
self, | |
logging_obj, | |
api_base: str, | |
data: dict, | |
headers: dict, | |
model_response: ModelResponse, | |
api_key: str, | |
model: str, | |
timeout: float, | |
max_retries: int, | |
organization: Optional[str] = None, | |
client=None, | |
): | |
try: | |
if client is None: | |
openai_aclient = AsyncOpenAI( | |
api_key=api_key, | |
base_url=api_base, | |
http_client=litellm.aclient_session, | |
timeout=timeout, | |
max_retries=max_retries, | |
organization=organization, | |
) | |
else: | |
openai_aclient = client | |
raw_response = await openai_aclient.completions.with_raw_response.create( | |
**data | |
) | |
response = raw_response.parse() | |
response_json = response.model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
api_key=api_key, | |
original_response=response, | |
additional_args={ | |
"headers": headers, | |
"api_base": api_base, | |
}, | |
) | |
## RESPONSE OBJECT | |
response_obj = TextCompletionResponse(**response_json) | |
response_obj._hidden_params.original_response = json.dumps(response_json) | |
return response_obj | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_text = getattr(e, "text", str(e)) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise OpenAIError( | |
status_code=status_code, message=error_text, headers=error_headers | |
) | |
def streaming( | |
self, | |
logging_obj, | |
api_key: str, | |
data: dict, | |
headers: dict, | |
model_response: ModelResponse, | |
model: str, | |
timeout: float, | |
api_base: Optional[str] = None, | |
max_retries=None, | |
client=None, | |
organization=None, | |
): | |
if client is None: | |
openai_client = OpenAI( | |
api_key=api_key, | |
base_url=api_base, | |
http_client=litellm.client_session, | |
timeout=timeout, | |
max_retries=max_retries, # type: ignore | |
organization=organization, | |
) | |
else: | |
openai_client = client | |
try: | |
raw_response = openai_client.completions.with_raw_response.create(**data) | |
response = raw_response.parse() | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_text = getattr(e, "text", str(e)) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise OpenAIError( | |
status_code=status_code, message=error_text, headers=error_headers | |
) | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=response, | |
model=model, | |
custom_llm_provider="text-completion-openai", | |
logging_obj=logging_obj, | |
stream_options=data.get("stream_options", None), | |
) | |
try: | |
for chunk in streamwrapper: | |
yield chunk | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_text = getattr(e, "text", str(e)) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise OpenAIError( | |
status_code=status_code, message=error_text, headers=error_headers | |
) | |
async def async_streaming( | |
self, | |
logging_obj, | |
api_key: str, | |
data: dict, | |
headers: dict, | |
model_response: ModelResponse, | |
model: str, | |
timeout: float, | |
max_retries: int, | |
api_base: Optional[str] = None, | |
client=None, | |
organization=None, | |
): | |
if client is None: | |
openai_client = AsyncOpenAI( | |
api_key=api_key, | |
base_url=api_base, | |
http_client=litellm.aclient_session, | |
timeout=timeout, | |
max_retries=max_retries, | |
organization=organization, | |
) | |
else: | |
openai_client = client | |
raw_response = await openai_client.completions.with_raw_response.create(**data) | |
response = raw_response.parse() | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=response, | |
model=model, | |
custom_llm_provider="text-completion-openai", | |
logging_obj=logging_obj, | |
stream_options=data.get("stream_options", None), | |
) | |
try: | |
async for transformed_chunk in streamwrapper: | |
yield transformed_chunk | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_text = getattr(e, "text", str(e)) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise OpenAIError( | |
status_code=status_code, message=error_text, headers=error_headers | |
) | |