Spaces:
Sleeping
Sleeping
from typing import Optional, Union | |
import httpx | |
from openai import AsyncOpenAI, OpenAI | |
from pydantic import BaseModel | |
import litellm | |
from litellm.litellm_core_utils.audio_utils.utils import get_audio_file_name | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
from litellm.llms.base_llm.audio_transcription.transformation import ( | |
BaseAudioTranscriptionConfig, | |
) | |
from litellm.types.utils import FileTypes | |
from litellm.utils import ( | |
TranscriptionResponse, | |
convert_to_model_response_object, | |
extract_duration_from_srt_or_vtt, | |
) | |
from ..openai import OpenAIChatCompletion | |
class OpenAIAudioTranscription(OpenAIChatCompletion): | |
# Audio Transcriptions | |
async def make_openai_audio_transcriptions_request( | |
self, | |
openai_aclient: AsyncOpenAI, | |
data: dict, | |
timeout: Union[float, httpx.Timeout], | |
): | |
""" | |
Helper to: | |
- call openai_aclient.audio.transcriptions.with_raw_response when litellm.return_response_headers is True | |
- call openai_aclient.audio.transcriptions.create by default | |
""" | |
try: | |
raw_response = ( | |
await openai_aclient.audio.transcriptions.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
) # type: ignore | |
headers = dict(raw_response.headers) | |
response = raw_response.parse() | |
return headers, response | |
except Exception as e: | |
raise e | |
def make_sync_openai_audio_transcriptions_request( | |
self, | |
openai_client: OpenAI, | |
data: dict, | |
timeout: Union[float, httpx.Timeout], | |
): | |
""" | |
Helper to: | |
- call openai_aclient.audio.transcriptions.with_raw_response when litellm.return_response_headers is True | |
- call openai_aclient.audio.transcriptions.create by default | |
""" | |
try: | |
if litellm.return_response_headers is True: | |
raw_response = ( | |
openai_client.audio.transcriptions.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
) # type: ignore | |
headers = dict(raw_response.headers) | |
response = raw_response.parse() | |
return headers, response | |
else: | |
response = openai_client.audio.transcriptions.create(**data, timeout=timeout) # type: ignore | |
return None, response | |
except Exception as e: | |
raise e | |
def audio_transcriptions( | |
self, | |
model: str, | |
audio_file: FileTypes, | |
optional_params: dict, | |
litellm_params: dict, | |
model_response: TranscriptionResponse, | |
timeout: float, | |
max_retries: int, | |
logging_obj: LiteLLMLoggingObj, | |
api_key: Optional[str], | |
api_base: Optional[str], | |
client=None, | |
atranscription: bool = False, | |
provider_config: Optional[BaseAudioTranscriptionConfig] = None, | |
) -> TranscriptionResponse: | |
""" | |
Handle audio transcription request | |
""" | |
if provider_config is not None: | |
data = provider_config.transform_audio_transcription_request( | |
model=model, | |
audio_file=audio_file, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
) | |
if isinstance(data, bytes): | |
raise ValueError("OpenAI transformation route requires a dict") | |
else: | |
data = {"model": model, "file": audio_file, **optional_params} | |
if atranscription is True: | |
return self.async_audio_transcriptions( # type: ignore | |
audio_file=audio_file, | |
data=data, | |
model_response=model_response, | |
timeout=timeout, | |
api_key=api_key, | |
api_base=api_base, | |
client=client, | |
max_retries=max_retries, | |
logging_obj=logging_obj, | |
) | |
openai_client: OpenAI = self._get_openai_client( # type: ignore | |
is_async=False, | |
api_key=api_key, | |
api_base=api_base, | |
timeout=timeout, | |
max_retries=max_retries, | |
client=client, | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=None, | |
api_key=openai_client.api_key, | |
additional_args={ | |
"api_base": openai_client._base_url._uri_reference, | |
"atranscription": True, | |
"complete_input_dict": data, | |
}, | |
) | |
_, response = self.make_sync_openai_audio_transcriptions_request( | |
openai_client=openai_client, | |
data=data, | |
timeout=timeout, | |
) | |
if isinstance(response, BaseModel): | |
stringified_response = response.model_dump() | |
else: | |
stringified_response = TranscriptionResponse(text=response).model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
input=get_audio_file_name(audio_file), | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=stringified_response, | |
) | |
hidden_params = {"model": "whisper-1", "custom_llm_provider": "openai"} | |
final_response: TranscriptionResponse = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore | |
return final_response | |
async def async_audio_transcriptions( | |
self, | |
audio_file: FileTypes, | |
data: dict, | |
model_response: TranscriptionResponse, | |
timeout: float, | |
logging_obj: LiteLLMLoggingObj, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
client=None, | |
max_retries=None, | |
): | |
try: | |
openai_aclient: AsyncOpenAI = self._get_openai_client( # type: ignore | |
is_async=True, | |
api_key=api_key, | |
api_base=api_base, | |
timeout=timeout, | |
max_retries=max_retries, | |
client=client, | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=None, | |
api_key=openai_aclient.api_key, | |
additional_args={ | |
"api_base": openai_aclient._base_url._uri_reference, | |
"atranscription": True, | |
"complete_input_dict": data, | |
}, | |
) | |
headers, response = await self.make_openai_audio_transcriptions_request( | |
openai_aclient=openai_aclient, | |
data=data, | |
timeout=timeout, | |
) | |
logging_obj.model_call_details["response_headers"] = headers | |
if isinstance(response, BaseModel): | |
stringified_response = response.model_dump() | |
else: | |
duration = extract_duration_from_srt_or_vtt(response) | |
stringified_response = TranscriptionResponse(text=response).model_dump() | |
stringified_response["duration"] = duration | |
## LOGGING | |
logging_obj.post_call( | |
input=get_audio_file_name(audio_file), | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=stringified_response, | |
) | |
hidden_params = {"model": "whisper-1", "custom_llm_provider": "openai"} | |
return convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore | |
except Exception as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
original_response=str(e), | |
) | |
raise e | |