Spaces:
Sleeping
Sleeping
import time | |
from typing import Callable, Optional, Union | |
import litellm | |
from litellm.litellm_core_utils.prompt_templates.factory import ( | |
custom_prompt, | |
prompt_factory, | |
) | |
from litellm.llms.custom_httpx.http_handler import ( | |
AsyncHTTPHandler, | |
HTTPHandler, | |
_get_httpx_client, | |
) | |
from litellm.utils import ModelResponse, Usage | |
from ..common_utils import PetalsError | |
def completion( | |
model: str, | |
messages: list, | |
api_base: Optional[str], | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
logging_obj, | |
optional_params: dict, | |
stream=False, | |
litellm_params=None, | |
logger_fn=None, | |
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, | |
): | |
## Load Config | |
config = litellm.PetalsConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > petals_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
if model in litellm.custom_prompt_dict: | |
# check if the model has a registered custom prompt | |
model_prompt_details = litellm.custom_prompt_dict[model] | |
prompt = custom_prompt( | |
role_dict=model_prompt_details["roles"], | |
initial_prompt_value=model_prompt_details["initial_prompt_value"], | |
final_prompt_value=model_prompt_details["final_prompt_value"], | |
messages=messages, | |
) | |
else: | |
prompt = prompt_factory(model=model, messages=messages) | |
output_text: Optional[str] = None | |
if api_base: | |
## LOGGING | |
logging_obj.pre_call( | |
input=prompt, | |
api_key="", | |
additional_args={ | |
"complete_input_dict": optional_params, | |
"api_base": api_base, | |
}, | |
) | |
data = {"model": model, "inputs": prompt, **optional_params} | |
## COMPLETION CALL | |
if client is None or not isinstance(client, HTTPHandler): | |
client = _get_httpx_client() | |
response = client.post(api_base, data=data) | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key="", | |
original_response=response.text, | |
additional_args={"complete_input_dict": optional_params}, | |
) | |
## RESPONSE OBJECT | |
try: | |
output_text = response.json()["outputs"] | |
except Exception as e: | |
PetalsError( | |
status_code=response.status_code, | |
message=str(e), | |
headers=response.headers, | |
) | |
else: | |
try: | |
from petals import AutoDistributedModelForCausalLM # type: ignore | |
from transformers import AutoTokenizer | |
except Exception: | |
raise Exception( | |
"Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals" | |
) | |
model = model | |
tokenizer = AutoTokenizer.from_pretrained( | |
model, use_fast=False, add_bos_token=False | |
) | |
model_obj = AutoDistributedModelForCausalLM.from_pretrained(model) | |
## LOGGING | |
logging_obj.pre_call( | |
input=prompt, | |
api_key="", | |
additional_args={"complete_input_dict": optional_params}, | |
) | |
## COMPLETION CALL | |
inputs = tokenizer(prompt, return_tensors="pt")["input_ids"] | |
# optional params: max_new_tokens=1,temperature=0.9, top_p=0.6 | |
outputs = model_obj.generate(inputs, **optional_params) | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key="", | |
original_response=outputs, | |
additional_args={"complete_input_dict": optional_params}, | |
) | |
## RESPONSE OBJECT | |
output_text = tokenizer.decode(outputs[0]) | |
if output_text is not None and len(output_text) > 0: | |
model_response.choices[0].message.content = output_text # type: ignore | |
prompt_tokens = len(encoding.encode(prompt)) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content")) | |
) | |
model_response.created = int(time.time()) | |
model_response.model = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
setattr(model_response, "usage", usage) | |
return model_response | |
def embedding(): | |
# logic for parsing in - calling - parsing out model embedding calls | |
pass | |