Spaces:
Sleeping
Sleeping
from typing import Any, List, Optional, Union | |
from httpx import Headers, Response | |
import litellm | |
from litellm.llms.base_llm.chat.transformation import ( | |
BaseConfig, | |
BaseLLMException, | |
LiteLLMLoggingObj, | |
) | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.types.utils import ModelResponse | |
from ..common_utils import PetalsError | |
class PetalsConfig(BaseConfig): | |
""" | |
Reference: https://github.com/petals-infra/chat.petals.dev#post-apiv1generate | |
The `PetalsConfig` class encapsulates the configuration for the Petals API. The properties of this class are described below: | |
- `max_length` (integer): This represents the maximum length of the generated text (including the prefix) in tokens. | |
- `max_new_tokens` (integer): This represents the maximum number of newly generated tokens (excluding the prefix). | |
The generation parameters are compatible with `.generate()` from Hugging Face's Transformers library: | |
- `do_sample` (boolean, optional): If set to 0 (default), the API runs greedy generation. If set to 1, the API performs sampling using the parameters below: | |
- `temperature` (float, optional): This value sets the temperature for sampling. | |
- `top_k` (integer, optional): This value sets the limit for top-k sampling. | |
- `top_p` (float, optional): This value sets the limit for top-p (nucleus) sampling. | |
- `repetition_penalty` (float, optional): This helps apply the repetition penalty during text generation, as discussed in this paper. | |
""" | |
max_length: Optional[int] = None | |
max_new_tokens: Optional[ | |
int | |
] = litellm.max_tokens # petals requires max tokens to be set | |
do_sample: Optional[bool] = None | |
temperature: Optional[float] = None | |
top_k: Optional[int] = None | |
top_p: Optional[float] = None | |
repetition_penalty: Optional[float] = None | |
def __init__( | |
self, | |
max_length: Optional[int] = None, | |
max_new_tokens: Optional[ | |
int | |
] = litellm.max_tokens, # petals requires max tokens to be set | |
do_sample: Optional[bool] = None, | |
temperature: Optional[float] = None, | |
top_k: Optional[int] = None, | |
top_p: Optional[float] = None, | |
repetition_penalty: Optional[float] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return super().get_config() | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[dict, Headers] | |
) -> BaseLLMException: | |
return PetalsError( | |
status_code=status_code, message=error_message, headers=headers | |
) | |
def get_supported_openai_params(self, model: str) -> List: | |
return ["max_tokens", "temperature", "top_p", "stream"] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
for param, value in non_default_params.items(): | |
if param == "max_tokens": | |
optional_params["max_new_tokens"] = value | |
if param == "temperature": | |
optional_params["temperature"] = value | |
if param == "top_p": | |
optional_params["top_p"] = value | |
if param == "stream": | |
optional_params["stream"] = value | |
return optional_params | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
raise NotImplementedError( | |
"Petals transformation currently done in handler.py. [TODO] Move to the transformation.py" | |
) | |
def transform_response( | |
self, | |
model: str, | |
raw_response: Response, | |
model_response: ModelResponse, | |
logging_obj: LiteLLMLoggingObj, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: Any, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
raise NotImplementedError( | |
"Petals transformation currently done in handler.py. [TODO] Move to the transformation.py" | |
) | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
return {} | |