Spaces:
Sleeping
Sleeping
from typing import TYPE_CHECKING, Any, List, Literal, Optional, Union | |
from httpx import Headers, Response | |
from litellm.constants import DEFAULT_MAX_TOKENS | |
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.types.utils import ModelResponse | |
from ..common_utils import PredibaseError | |
if TYPE_CHECKING: | |
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj | |
LiteLLMLoggingObj = _LiteLLMLoggingObj | |
else: | |
LiteLLMLoggingObj = Any | |
class PredibaseConfig(BaseConfig): | |
""" | |
Reference: https://docs.predibase.com/user-guide/inference/rest_api | |
""" | |
adapter_id: Optional[str] = None | |
adapter_source: Optional[Literal["pbase", "hub", "s3"]] = None | |
best_of: Optional[int] = None | |
decoder_input_details: Optional[bool] = None | |
details: bool = True # enables returning logprobs + best of | |
max_new_tokens: int = ( | |
DEFAULT_MAX_TOKENS # openai default - requests hang if max_new_tokens not given | |
) | |
repetition_penalty: Optional[float] = None | |
return_full_text: Optional[ | |
bool | |
] = False # by default don't return the input as part of the output | |
seed: Optional[int] = None | |
stop: Optional[List[str]] = None | |
temperature: Optional[float] = None | |
top_k: Optional[int] = None | |
top_p: Optional[int] = None | |
truncate: Optional[int] = None | |
typical_p: Optional[float] = None | |
watermark: Optional[bool] = None | |
def __init__( | |
self, | |
best_of: Optional[int] = None, | |
decoder_input_details: Optional[bool] = None, | |
details: Optional[bool] = None, | |
max_new_tokens: Optional[int] = None, | |
repetition_penalty: Optional[float] = None, | |
return_full_text: Optional[bool] = None, | |
seed: Optional[int] = None, | |
stop: Optional[List[str]] = None, | |
temperature: Optional[float] = None, | |
top_k: Optional[int] = None, | |
top_p: Optional[int] = None, | |
truncate: Optional[int] = None, | |
typical_p: Optional[float] = None, | |
watermark: Optional[bool] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return super().get_config() | |
def get_supported_openai_params(self, model: str): | |
return [ | |
"stream", | |
"temperature", | |
"max_completion_tokens", | |
"max_tokens", | |
"top_p", | |
"stop", | |
"n", | |
"response_format", | |
] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
for param, value in non_default_params.items(): | |
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None | |
if param == "temperature": | |
if value == 0.0 or value == 0: | |
# hugging face exception raised when temp==0 | |
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive | |
value = 0.01 | |
optional_params["temperature"] = value | |
if param == "top_p": | |
optional_params["top_p"] = value | |
if param == "n": | |
optional_params["best_of"] = value | |
optional_params[ | |
"do_sample" | |
] = True # Need to sample if you want best of for hf inference endpoints | |
if param == "stream": | |
optional_params["stream"] = value | |
if param == "stop": | |
optional_params["stop"] = value | |
if param == "max_tokens" or param == "max_completion_tokens": | |
# HF TGI raises the following exception when max_new_tokens==0 | |
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive | |
if value == 0: | |
value = 1 | |
optional_params["max_new_tokens"] = value | |
if param == "echo": | |
# https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details | |
# Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False | |
optional_params["decoder_input_details"] = True | |
if param == "response_format": | |
optional_params["response_format"] = value | |
return optional_params | |
def transform_response( | |
self, | |
model: str, | |
raw_response: Response, | |
model_response: ModelResponse, | |
logging_obj: LiteLLMLoggingObj, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: str, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
raise NotImplementedError( | |
"Predibase transformation currently done in handler.py. Need to migrate to this file." | |
) | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
raise NotImplementedError( | |
"Predibase transformation currently done in handler.py. Need to migrate to this file." | |
) | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[dict, Headers] | |
) -> BaseLLMException: | |
return PredibaseError( | |
status_code=status_code, message=error_message, headers=headers | |
) | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
if api_key is None: | |
raise ValueError( | |
"Missing Predibase API Key - A call is being made to predibase but no key is set either in the environment variables or via params" | |
) | |
default_headers = { | |
"content-type": "application/json", | |
"Authorization": "Bearer {}".format(api_key), | |
} | |
if headers is not None and isinstance(headers, dict): | |
headers = {**default_headers, **headers} | |
return headers | |