Spaces:
Sleeping
Sleeping
from typing import TYPE_CHECKING, Any, List, Optional, Union | |
import httpx | |
import litellm | |
from litellm.constants import REPLICATE_MODEL_NAME_WITH_ID_LENGTH | |
from litellm.litellm_core_utils.prompt_templates.common_utils import ( | |
convert_content_list_to_str, | |
) | |
from litellm.litellm_core_utils.prompt_templates.factory import ( | |
custom_prompt, | |
prompt_factory, | |
) | |
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.types.utils import ModelResponse, Usage | |
from litellm.utils import token_counter | |
from ..common_utils import ReplicateError | |
if TYPE_CHECKING: | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
LoggingClass = LiteLLMLoggingObj | |
else: | |
LoggingClass = Any | |
class ReplicateConfig(BaseConfig): | |
""" | |
Reference: https://replicate.com/meta/llama-2-70b-chat/api | |
- `prompt` (string): The prompt to send to the model. | |
- `system_prompt` (string): The system prompt to send to the model. This is prepended to the prompt and helps guide system behavior. Default value: `You are a helpful assistant`. | |
- `max_new_tokens` (integer): Maximum number of tokens to generate. Typically, a word is made up of 2-3 tokens. Default value: `128`. | |
- `min_new_tokens` (integer): Minimum number of tokens to generate. To disable, set to `-1`. A word is usually 2-3 tokens. Default value: `-1`. | |
- `temperature` (number): Adjusts the randomness of outputs. Values greater than 1 increase randomness, 0 is deterministic, and 0.75 is a reasonable starting value. Default value: `0.75`. | |
- `top_p` (number): During text decoding, it samples from the top `p` percentage of most likely tokens. Reduce this to ignore less probable tokens. Default value: `0.9`. | |
- `top_k` (integer): During text decoding, samples from the top `k` most likely tokens. Reduce this to ignore less probable tokens. Default value: `50`. | |
- `stop_sequences` (string): A comma-separated list of sequences to stop generation at. For example, inputting '<end>,<stop>' will cease generation at the first occurrence of either 'end' or '<stop>'. | |
- `seed` (integer): This is the seed for the random generator. Leave it blank to randomize the seed. | |
- `debug` (boolean): If set to `True`, it provides debugging output in logs. | |
Please note that Replicate's mapping of these parameters can be inconsistent across different models, indicating that not all of these parameters may be available for use with all models. | |
""" | |
system_prompt: Optional[str] = None | |
max_new_tokens: Optional[int] = None | |
min_new_tokens: Optional[int] = None | |
temperature: Optional[int] = None | |
top_p: Optional[int] = None | |
top_k: Optional[int] = None | |
stop_sequences: Optional[str] = None | |
seed: Optional[int] = None | |
debug: Optional[bool] = None | |
def __init__( | |
self, | |
system_prompt: Optional[str] = None, | |
max_new_tokens: Optional[int] = None, | |
min_new_tokens: Optional[int] = None, | |
temperature: Optional[int] = None, | |
top_p: Optional[int] = None, | |
top_k: Optional[int] = None, | |
stop_sequences: Optional[str] = None, | |
seed: Optional[int] = None, | |
debug: Optional[bool] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return super().get_config() | |
def get_supported_openai_params(self, model: str) -> list: | |
return [ | |
"stream", | |
"temperature", | |
"max_tokens", | |
"top_p", | |
"stop", | |
"seed", | |
"tools", | |
"tool_choice", | |
"functions", | |
"function_call", | |
] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
for param, value in non_default_params.items(): | |
if param == "stream": | |
optional_params["stream"] = value | |
if param == "max_tokens": | |
if "vicuna" in model or "flan" in model: | |
optional_params["max_length"] = value | |
elif "meta/codellama-13b" in model: | |
optional_params["max_tokens"] = value | |
else: | |
optional_params["max_new_tokens"] = value | |
if param == "temperature": | |
optional_params["temperature"] = value | |
if param == "top_p": | |
optional_params["top_p"] = value | |
if param == "stop": | |
optional_params["stop_sequences"] = value | |
return optional_params | |
# Function to extract version ID from model string | |
def model_to_version_id(self, model: str) -> str: | |
if ":" in model: | |
split_model = model.split(":") | |
return split_model[1] | |
return model | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] | |
) -> BaseLLMException: | |
return ReplicateError( | |
status_code=status_code, message=error_message, headers=headers | |
) | |
def get_complete_url( | |
self, | |
api_base: Optional[str], | |
api_key: Optional[str], | |
model: str, | |
optional_params: dict, | |
litellm_params: dict, | |
stream: Optional[bool] = None, | |
) -> str: | |
version_id = self.model_to_version_id(model) | |
base_url = api_base | |
if "deployments" in version_id: | |
version_id = version_id.replace("deployments/", "") | |
base_url = f"https://api.replicate.com/v1/deployments/{version_id}" | |
else: # assume it's a model | |
base_url = f"https://api.replicate.com/v1/models/{version_id}" | |
base_url = f"{base_url}/predictions" | |
return base_url | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
## Load Config | |
config = litellm.ReplicateConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > replicate_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
system_prompt = None | |
if optional_params is not None and "supports_system_prompt" in optional_params: | |
supports_sys_prompt = optional_params.pop("supports_system_prompt") | |
else: | |
supports_sys_prompt = False | |
if supports_sys_prompt: | |
for i in range(len(messages)): | |
if messages[i]["role"] == "system": | |
first_sys_message = messages.pop(i) | |
system_prompt = convert_content_list_to_str(first_sys_message) | |
break | |
if model in litellm.custom_prompt_dict: | |
# check if the model has a registered custom prompt | |
model_prompt_details = litellm.custom_prompt_dict[model] | |
prompt = custom_prompt( | |
role_dict=model_prompt_details.get("roles", {}), | |
initial_prompt_value=model_prompt_details.get( | |
"initial_prompt_value", "" | |
), | |
final_prompt_value=model_prompt_details.get("final_prompt_value", ""), | |
bos_token=model_prompt_details.get("bos_token", ""), | |
eos_token=model_prompt_details.get("eos_token", ""), | |
messages=messages, | |
) | |
else: | |
prompt = prompt_factory(model=model, messages=messages) | |
if prompt is None or not isinstance(prompt, str): | |
raise ReplicateError( | |
status_code=400, | |
message="LiteLLM Error - prompt is not a string - {}".format(prompt), | |
headers={}, | |
) | |
# If system prompt is supported, and a system prompt is provided, use it | |
if system_prompt is not None: | |
input_data = { | |
"prompt": prompt, | |
"system_prompt": system_prompt, | |
**optional_params, | |
} | |
# Otherwise, use the prompt as is | |
else: | |
input_data = {"prompt": prompt, **optional_params} | |
version_id = self.model_to_version_id(model) | |
request_data: dict = {"input": input_data} | |
if ":" in version_id and len(version_id) > REPLICATE_MODEL_NAME_WITH_ID_LENGTH: | |
model_parts = version_id.split(":") | |
if ( | |
len(model_parts) > 1 | |
and len(model_parts[1]) == REPLICATE_MODEL_NAME_WITH_ID_LENGTH | |
): ## checks if model name has a 64 digit code - e.g. "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3" | |
request_data["version"] = model_parts[1] | |
return request_data | |
def transform_response( | |
self, | |
model: str, | |
raw_response: httpx.Response, | |
model_response: ModelResponse, | |
logging_obj: LoggingClass, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: Any, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
logging_obj.post_call( | |
input=messages, | |
api_key=api_key, | |
original_response=raw_response.text, | |
additional_args={"complete_input_dict": request_data}, | |
) | |
raw_response_json = raw_response.json() | |
if raw_response_json.get("status") != "succeeded": | |
raise ReplicateError( | |
status_code=422, | |
message="LiteLLM Error - prediction not succeeded - {}".format( | |
raw_response_json | |
), | |
headers=raw_response.headers, | |
) | |
outputs = raw_response_json.get("output", []) | |
response_str = "".join(outputs) | |
if len(response_str) == 0: # edge case, where result from replicate is empty | |
response_str = " " | |
## Building RESPONSE OBJECT | |
if len(response_str) >= 1: | |
model_response.choices[0].message.content = response_str # type: ignore | |
# Calculate usage | |
prompt_tokens = token_counter(model=model, messages=messages) | |
completion_tokens = token_counter( | |
model=model, | |
text=response_str, | |
count_response_tokens=True, | |
) | |
model_response.model = "replicate/" + model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
setattr(model_response, "usage", usage) | |
return model_response | |
def get_prediction_url(self, response: httpx.Response) -> str: | |
""" | |
response json: { | |
..., | |
"urls":{"cancel":"https://api.replicate.com/v1/predictions/gqsmqmp1pdrj00cknr08dgmvb4/cancel","get":"https://api.replicate.com/v1/predictions/gqsmqmp1pdrj00cknr08dgmvb4","stream":"https://stream-b.svc.rno2.c.replicate.net/v1/streams/eot4gbydowuin4snhncydwxt57dfwgsc3w3snycx5nid7oef7jga"} | |
} | |
""" | |
response_json = response.json() | |
prediction_url = response_json.get("urls", {}).get("get") | |
if prediction_url is None: | |
raise ReplicateError( | |
status_code=400, | |
message="LiteLLM Error - prediction url is None - {}".format( | |
response_json | |
), | |
headers=response.headers, | |
) | |
return prediction_url | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
headers = { | |
"Authorization": f"Token {api_key}", | |
"Content-Type": "application/json", | |
} | |
return headers | |