Spaces:
Sleeping
Sleeping
import json | |
from copy import deepcopy | |
from typing import Any, Callable, List, Optional, Union, cast | |
import httpx | |
import litellm | |
from litellm._logging import verbose_logger | |
from litellm.litellm_core_utils.asyncify import asyncify | |
from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM | |
from litellm.llms.custom_httpx.http_handler import ( | |
_get_httpx_client, | |
get_async_httpx_client, | |
) | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.utils import ( | |
CustomStreamWrapper, | |
EmbeddingResponse, | |
ModelResponse, | |
Usage, | |
get_secret, | |
) | |
from ..common_utils import AWSEventStreamDecoder, SagemakerError | |
from .transformation import SagemakerConfig | |
sagemaker_config = SagemakerConfig() | |
""" | |
SAGEMAKER AUTH Keys/Vars | |
os.environ['AWS_ACCESS_KEY_ID'] = "" | |
os.environ['AWS_SECRET_ACCESS_KEY'] = "" | |
""" | |
# set os.environ['AWS_REGION_NAME'] = <your-region_name> | |
class SagemakerLLM(BaseAWSLLM): | |
def _load_credentials( | |
self, | |
optional_params: dict, | |
): | |
try: | |
from botocore.credentials import Credentials | |
except ImportError: | |
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") | |
## CREDENTIALS ## | |
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them | |
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) | |
aws_access_key_id = optional_params.pop("aws_access_key_id", None) | |
aws_session_token = optional_params.pop("aws_session_token", None) | |
aws_region_name = optional_params.pop("aws_region_name", None) | |
aws_role_name = optional_params.pop("aws_role_name", None) | |
aws_session_name = optional_params.pop("aws_session_name", None) | |
aws_profile_name = optional_params.pop("aws_profile_name", None) | |
optional_params.pop( | |
"aws_bedrock_runtime_endpoint", None | |
) # https://bedrock-runtime.{region_name}.amazonaws.com | |
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None) | |
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None) | |
### SET REGION NAME ### | |
if aws_region_name is None: | |
# check env # | |
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None) | |
if litellm_aws_region_name is not None and isinstance( | |
litellm_aws_region_name, str | |
): | |
aws_region_name = litellm_aws_region_name | |
standard_aws_region_name = get_secret("AWS_REGION", None) | |
if standard_aws_region_name is not None and isinstance( | |
standard_aws_region_name, str | |
): | |
aws_region_name = standard_aws_region_name | |
if aws_region_name is None: | |
aws_region_name = "us-west-2" | |
credentials: Credentials = self.get_credentials( | |
aws_access_key_id=aws_access_key_id, | |
aws_secret_access_key=aws_secret_access_key, | |
aws_session_token=aws_session_token, | |
aws_region_name=aws_region_name, | |
aws_session_name=aws_session_name, | |
aws_profile_name=aws_profile_name, | |
aws_role_name=aws_role_name, | |
aws_web_identity_token=aws_web_identity_token, | |
aws_sts_endpoint=aws_sts_endpoint, | |
) | |
return credentials, aws_region_name | |
def _prepare_request( | |
self, | |
credentials, | |
model: str, | |
data: dict, | |
messages: List[AllMessageValues], | |
litellm_params: dict, | |
optional_params: dict, | |
aws_region_name: str, | |
extra_headers: Optional[dict] = None, | |
): | |
try: | |
from botocore.auth import SigV4Auth | |
from botocore.awsrequest import AWSRequest | |
except ImportError: | |
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") | |
sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name) | |
if optional_params.get("stream") is True: | |
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream" | |
else: | |
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations" | |
sagemaker_base_url = optional_params.get("sagemaker_base_url", None) | |
if sagemaker_base_url is not None: | |
api_base = sagemaker_base_url | |
encoded_data = json.dumps(data).encode("utf-8") | |
headers = sagemaker_config.validate_environment( | |
headers=extra_headers, | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
) | |
request = AWSRequest( | |
method="POST", url=api_base, data=encoded_data, headers=headers | |
) | |
sigv4.add_auth(request) | |
if ( | |
extra_headers is not None and "Authorization" in extra_headers | |
): # prevent sigv4 from overwriting the auth header | |
request.headers["Authorization"] = extra_headers["Authorization"] | |
prepped_request = request.prepare() | |
return prepped_request | |
def completion( # noqa: PLR0915 | |
self, | |
model: str, | |
messages: list, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
logging_obj, | |
optional_params: dict, | |
litellm_params: dict, | |
timeout: Optional[Union[float, httpx.Timeout]] = None, | |
custom_prompt_dict={}, | |
hf_model_name=None, | |
logger_fn=None, | |
acompletion: bool = False, | |
headers: dict = {}, | |
): | |
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker | |
credentials, aws_region_name = self._load_credentials(optional_params) | |
inference_params = deepcopy(optional_params) | |
stream = inference_params.pop("stream", None) | |
model_id = optional_params.get("model_id", None) | |
## Load Config | |
config = litellm.SagemakerConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
if stream is True: | |
if acompletion is True: | |
response = self.async_streaming( | |
messages=messages, | |
model=model, | |
custom_prompt_dict=custom_prompt_dict, | |
hf_model_name=hf_model_name, | |
optional_params=optional_params, | |
encoding=encoding, | |
model_response=model_response, | |
logging_obj=logging_obj, | |
model_id=model_id, | |
aws_region_name=aws_region_name, | |
credentials=credentials, | |
headers=headers, | |
litellm_params=litellm_params, | |
) | |
return response | |
else: | |
data = sagemaker_config.transform_request( | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
headers=headers, | |
) | |
prepared_request = self._prepare_request( | |
model=model, | |
data=data, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
credentials=credentials, | |
aws_region_name=aws_region_name, | |
) | |
if model_id is not None: | |
# Add model_id as InferenceComponentName header | |
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html | |
prepared_request.headers.update( | |
{"X-Amzn-SageMaker-Inference-Component": model_id} | |
) | |
sync_handler = _get_httpx_client() | |
sync_response = sync_handler.post( | |
url=prepared_request.url, | |
headers=prepared_request.headers, # type: ignore | |
data=prepared_request.body, | |
stream=stream, | |
) | |
if sync_response.status_code != 200: | |
raise SagemakerError( | |
status_code=sync_response.status_code, | |
message=str(sync_response.read()), | |
) | |
decoder = AWSEventStreamDecoder(model="") | |
completion_stream = decoder.iter_bytes( | |
sync_response.iter_bytes(chunk_size=1024) | |
) | |
streaming_response = CustomStreamWrapper( | |
completion_stream=completion_stream, | |
model=model, | |
custom_llm_provider="sagemaker", | |
logging_obj=logging_obj, | |
) | |
## LOGGING | |
logging_obj.post_call( | |
input=messages, | |
api_key="", | |
original_response=streaming_response, | |
additional_args={"complete_input_dict": data}, | |
) | |
return streaming_response | |
# Non-Streaming Requests | |
# Async completion | |
if acompletion is True: | |
return self.async_completion( | |
messages=messages, | |
model=model, | |
custom_prompt_dict=custom_prompt_dict, | |
hf_model_name=hf_model_name, | |
model_response=model_response, | |
encoding=encoding, | |
logging_obj=logging_obj, | |
model_id=model_id, | |
optional_params=optional_params, | |
credentials=credentials, | |
aws_region_name=aws_region_name, | |
headers=headers, | |
litellm_params=litellm_params, | |
) | |
## Non-Streaming completion CALL | |
_data = sagemaker_config.transform_request( | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
headers=headers, | |
) | |
prepared_request_args = { | |
"model": model, | |
"data": _data, | |
"optional_params": optional_params, | |
"litellm_params": litellm_params, | |
"credentials": credentials, | |
"aws_region_name": aws_region_name, | |
"messages": messages, | |
} | |
prepared_request = self._prepare_request(**prepared_request_args) | |
try: | |
if model_id is not None: | |
# Add model_id as InferenceComponentName header | |
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html | |
prepared_request.headers.update( | |
{"X-Amzn-SageMaker-Inference-Component": model_id} | |
) | |
## LOGGING | |
timeout = 300.0 | |
sync_handler = _get_httpx_client() | |
## LOGGING | |
logging_obj.pre_call( | |
input=[], | |
api_key="", | |
additional_args={ | |
"complete_input_dict": _data, | |
"api_base": prepared_request.url, | |
"headers": prepared_request.headers, | |
}, | |
) | |
# make sync httpx post request here | |
try: | |
sync_response = sync_handler.post( | |
url=prepared_request.url, | |
headers=prepared_request.headers, # type: ignore | |
data=prepared_request.body, | |
timeout=timeout, | |
) | |
if sync_response.status_code != 200: | |
raise SagemakerError( | |
status_code=sync_response.status_code, | |
message=sync_response.text, | |
) | |
except Exception as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=[], | |
api_key="", | |
original_response=str(e), | |
additional_args={"complete_input_dict": _data}, | |
) | |
raise e | |
except Exception as e: | |
verbose_logger.error("Sagemaker error %s", str(e)) | |
status_code = ( | |
getattr(e, "response", {}) | |
.get("ResponseMetadata", {}) | |
.get("HTTPStatusCode", 500) | |
) | |
error_message = ( | |
getattr(e, "response", {}).get("Error", {}).get("Message", str(e)) | |
) | |
if "Inference Component Name header is required" in error_message: | |
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`" | |
raise SagemakerError(status_code=status_code, message=error_message) | |
return sagemaker_config.transform_response( | |
model=model, | |
raw_response=sync_response, | |
model_response=model_response, | |
logging_obj=logging_obj, | |
request_data=_data, | |
messages=messages, | |
optional_params=optional_params, | |
encoding=encoding, | |
litellm_params=litellm_params, | |
) | |
async def make_async_call( | |
self, | |
api_base: str, | |
headers: dict, | |
data: str, | |
logging_obj, | |
client=None, | |
): | |
try: | |
if client is None: | |
client = get_async_httpx_client( | |
llm_provider=litellm.LlmProviders.SAGEMAKER | |
) # Create a new client if none provided | |
response = await client.post( | |
api_base, | |
headers=headers, | |
data=data, | |
stream=True, | |
) | |
if response.status_code != 200: | |
raise SagemakerError( | |
status_code=response.status_code, message=response.text | |
) | |
decoder = AWSEventStreamDecoder(model="") | |
completion_stream = decoder.aiter_bytes( | |
response.aiter_bytes(chunk_size=1024) | |
) | |
return completion_stream | |
# LOGGING | |
logging_obj.post_call( | |
input=[], | |
api_key="", | |
original_response="first stream response received", | |
additional_args={"complete_input_dict": data}, | |
) | |
except httpx.HTTPStatusError as err: | |
error_code = err.response.status_code | |
raise SagemakerError(status_code=error_code, message=err.response.text) | |
except httpx.TimeoutException: | |
raise SagemakerError(status_code=408, message="Timeout error occurred.") | |
except Exception as e: | |
raise SagemakerError(status_code=500, message=str(e)) | |
async def async_streaming( | |
self, | |
messages: List[AllMessageValues], | |
model: str, | |
custom_prompt_dict: dict, | |
hf_model_name: Optional[str], | |
credentials, | |
aws_region_name: str, | |
optional_params, | |
encoding, | |
model_response: ModelResponse, | |
model_id: Optional[str], | |
logging_obj: Any, | |
litellm_params: dict, | |
headers: dict, | |
): | |
data = await sagemaker_config.async_transform_request( | |
model=model, | |
messages=messages, | |
optional_params={**optional_params, "stream": True}, | |
litellm_params=litellm_params, | |
headers=headers, | |
) | |
asyncified_prepare_request = asyncify(self._prepare_request) | |
prepared_request_args = { | |
"model": model, | |
"data": data, | |
"optional_params": optional_params, | |
"litellm_params": litellm_params, | |
"credentials": credentials, | |
"aws_region_name": aws_region_name, | |
"messages": messages, | |
} | |
prepared_request = await asyncified_prepare_request(**prepared_request_args) | |
if model_id is not None: # Fixes https://github.com/BerriAI/litellm/issues/8889 | |
prepared_request.headers.update( | |
{"X-Amzn-SageMaker-Inference-Component": model_id} | |
) | |
if not prepared_request.body: | |
raise ValueError("Prepared request body is empty") | |
completion_stream = await self.make_async_call( | |
api_base=prepared_request.url, | |
headers=prepared_request.headers, # type: ignore | |
data=cast(str, prepared_request.body), | |
logging_obj=logging_obj, | |
) | |
streaming_response = CustomStreamWrapper( | |
completion_stream=completion_stream, | |
model=model, | |
custom_llm_provider="sagemaker", | |
logging_obj=logging_obj, | |
) | |
# LOGGING | |
logging_obj.post_call( | |
input=[], | |
api_key="", | |
original_response="first stream response received", | |
additional_args={"complete_input_dict": data}, | |
) | |
return streaming_response | |
async def async_completion( | |
self, | |
messages: List[AllMessageValues], | |
model: str, | |
custom_prompt_dict: dict, | |
hf_model_name: Optional[str], | |
credentials, | |
aws_region_name: str, | |
encoding, | |
model_response: ModelResponse, | |
optional_params: dict, | |
logging_obj: Any, | |
model_id: Optional[str], | |
headers: dict, | |
litellm_params: dict, | |
): | |
timeout = 300.0 | |
async_handler = get_async_httpx_client( | |
llm_provider=litellm.LlmProviders.SAGEMAKER | |
) | |
data = await sagemaker_config.async_transform_request( | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
headers=headers, | |
) | |
asyncified_prepare_request = asyncify(self._prepare_request) | |
prepared_request_args = { | |
"model": model, | |
"data": data, | |
"optional_params": optional_params, | |
"litellm_params": litellm_params, | |
"credentials": credentials, | |
"aws_region_name": aws_region_name, | |
"messages": messages, | |
} | |
prepared_request = await asyncified_prepare_request(**prepared_request_args) | |
## LOGGING | |
logging_obj.pre_call( | |
input=[], | |
api_key="", | |
additional_args={ | |
"complete_input_dict": data, | |
"api_base": prepared_request.url, | |
"headers": prepared_request.headers, | |
}, | |
) | |
try: | |
if model_id is not None: | |
# Add model_id as InferenceComponentName header | |
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html | |
prepared_request.headers.update( | |
{"X-Amzn-SageMaker-Inference-Component": model_id} | |
) | |
# make async httpx post request here | |
try: | |
response = await async_handler.post( | |
url=prepared_request.url, | |
headers=prepared_request.headers, # type: ignore | |
data=prepared_request.body, | |
timeout=timeout, | |
) | |
if response.status_code != 200: | |
raise SagemakerError( | |
status_code=response.status_code, message=response.text | |
) | |
except Exception as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=data["inputs"], | |
api_key="", | |
original_response=str(e), | |
additional_args={"complete_input_dict": data}, | |
) | |
raise e | |
except Exception as e: | |
error_message = f"{str(e)}" | |
if "Inference Component Name header is required" in error_message: | |
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`" | |
raise SagemakerError(status_code=500, message=error_message) | |
return sagemaker_config.transform_response( | |
model=model, | |
raw_response=response, | |
model_response=model_response, | |
logging_obj=logging_obj, | |
request_data=data, | |
messages=messages, | |
optional_params=optional_params, | |
encoding=encoding, | |
litellm_params=litellm_params, | |
) | |
def embedding( | |
self, | |
model: str, | |
input: list, | |
model_response: EmbeddingResponse, | |
print_verbose: Callable, | |
encoding, | |
logging_obj, | |
optional_params: dict, | |
custom_prompt_dict={}, | |
litellm_params=None, | |
logger_fn=None, | |
): | |
""" | |
Supports Huggingface Jumpstart embeddings like GPT-6B | |
""" | |
### BOTO3 INIT | |
import boto3 | |
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them | |
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) | |
aws_access_key_id = optional_params.pop("aws_access_key_id", None) | |
aws_region_name = optional_params.pop("aws_region_name", None) | |
if aws_access_key_id is not None: | |
# uses auth params passed to completion | |
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion | |
client = boto3.client( | |
service_name="sagemaker-runtime", | |
aws_access_key_id=aws_access_key_id, | |
aws_secret_access_key=aws_secret_access_key, | |
region_name=aws_region_name, | |
) | |
else: | |
# aws_access_key_id is None, assume user is trying to auth using env variables | |
# boto3 automaticaly reads env variables | |
# we need to read region name from env | |
# I assume majority of users use .env for auth | |
region_name = ( | |
get_secret("AWS_REGION_NAME") | |
or aws_region_name # get region from config file if specified | |
or "us-west-2" # default to us-west-2 if region not specified | |
) | |
client = boto3.client( | |
service_name="sagemaker-runtime", | |
region_name=region_name, | |
) | |
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker | |
inference_params = deepcopy(optional_params) | |
inference_params.pop("stream", None) | |
## Load Config | |
config = litellm.SagemakerConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
#### HF EMBEDDING LOGIC | |
data = json.dumps({"text_inputs": input}).encode("utf-8") | |
## LOGGING | |
request_str = f""" | |
response = client.invoke_endpoint( | |
EndpointName={model}, | |
ContentType="application/json", | |
Body=f"{data!r}", # Use !r for safe representation | |
CustomAttributes="accept_eula=true", | |
)""" # type: ignore | |
logging_obj.pre_call( | |
input=input, | |
api_key="", | |
additional_args={"complete_input_dict": data, "request_str": request_str}, | |
) | |
## EMBEDDING CALL | |
try: | |
response = client.invoke_endpoint( | |
EndpointName=model, | |
ContentType="application/json", | |
Body=data, | |
CustomAttributes="accept_eula=true", | |
) | |
except Exception as e: | |
status_code = ( | |
getattr(e, "response", {}) | |
.get("ResponseMetadata", {}) | |
.get("HTTPStatusCode", 500) | |
) | |
error_message = ( | |
getattr(e, "response", {}).get("Error", {}).get("Message", str(e)) | |
) | |
raise SagemakerError(status_code=status_code, message=error_message) | |
response = json.loads(response["Body"].read().decode("utf8")) | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key="", | |
original_response=response, | |
additional_args={"complete_input_dict": data}, | |
) | |
print_verbose(f"raw model_response: {response}") | |
if "embedding" not in response: | |
raise SagemakerError( | |
status_code=500, message="embedding not found in response" | |
) | |
embeddings = response["embedding"] | |
if not isinstance(embeddings, list): | |
raise SagemakerError( | |
status_code=422, | |
message=f"Response not in expected format - {embeddings}", | |
) | |
output_data = [] | |
for idx, embedding in enumerate(embeddings): | |
output_data.append( | |
{"object": "embedding", "index": idx, "embedding": embedding} | |
) | |
model_response.object = "list" | |
model_response.data = output_data | |
model_response.model = model | |
input_tokens = 0 | |
for text in input: | |
input_tokens += len(encoding.encode(text)) | |
setattr( | |
model_response, | |
"usage", | |
Usage( | |
prompt_tokens=input_tokens, | |
completion_tokens=0, | |
total_tokens=input_tokens, | |
), | |
) | |
return model_response | |