Spaces:
Sleeping
Sleeping
from typing import Any, Dict, List, Optional | |
import litellm | |
from litellm import get_secret | |
from litellm._logging import verbose_proxy_logger | |
from litellm.proxy._types import CommonProxyErrors, LiteLLMPromptInjectionParams | |
from litellm.proxy.types_utils.utils import get_instance_fn | |
blue_color_code = "\033[94m" | |
reset_color_code = "\033[0m" | |
def initialize_callbacks_on_proxy( # noqa: PLR0915 | |
value: Any, | |
premium_user: bool, | |
config_file_path: str, | |
litellm_settings: dict, | |
callback_specific_params: dict = {}, | |
): | |
from litellm.proxy.proxy_server import prisma_client | |
verbose_proxy_logger.debug( | |
f"{blue_color_code}initializing callbacks={value} on proxy{reset_color_code}" | |
) | |
if isinstance(value, list): | |
imported_list: List[Any] = [] | |
for callback in value: # ["presidio", <my-custom-callback>] | |
if ( | |
isinstance(callback, str) | |
and callback in litellm._known_custom_logger_compatible_callbacks | |
): | |
imported_list.append(callback) | |
elif isinstance(callback, str) and callback == "presidio": | |
from litellm.proxy.guardrails.guardrail_hooks.presidio import ( | |
_OPTIONAL_PresidioPIIMasking, | |
) | |
presidio_logging_only: Optional[bool] = litellm_settings.get( | |
"presidio_logging_only", None | |
) | |
if presidio_logging_only is not None: | |
presidio_logging_only = bool( | |
presidio_logging_only | |
) # validate boolean given | |
_presidio_params = {} | |
if "presidio" in callback_specific_params and isinstance( | |
callback_specific_params["presidio"], dict | |
): | |
_presidio_params = callback_specific_params["presidio"] | |
params: Dict[str, Any] = { | |
"logging_only": presidio_logging_only, | |
**_presidio_params, | |
} | |
pii_masking_object = _OPTIONAL_PresidioPIIMasking(**params) | |
imported_list.append(pii_masking_object) | |
elif isinstance(callback, str) and callback == "llamaguard_moderations": | |
from enterprise.enterprise_hooks.llama_guard import ( | |
_ENTERPRISE_LlamaGuard, | |
) | |
if premium_user is not True: | |
raise Exception( | |
"Trying to use Llama Guard" | |
+ CommonProxyErrors.not_premium_user.value | |
) | |
llama_guard_object = _ENTERPRISE_LlamaGuard() | |
imported_list.append(llama_guard_object) | |
elif isinstance(callback, str) and callback == "hide_secrets": | |
from enterprise.enterprise_hooks.secret_detection import ( | |
_ENTERPRISE_SecretDetection, | |
) | |
if premium_user is not True: | |
raise Exception( | |
"Trying to use secret hiding" | |
+ CommonProxyErrors.not_premium_user.value | |
) | |
_secret_detection_object = _ENTERPRISE_SecretDetection() | |
imported_list.append(_secret_detection_object) | |
elif isinstance(callback, str) and callback == "openai_moderations": | |
from enterprise.enterprise_hooks.openai_moderation import ( | |
_ENTERPRISE_OpenAI_Moderation, | |
) | |
if premium_user is not True: | |
raise Exception( | |
"Trying to use OpenAI Moderations Check" | |
+ CommonProxyErrors.not_premium_user.value | |
) | |
openai_moderations_object = _ENTERPRISE_OpenAI_Moderation() | |
imported_list.append(openai_moderations_object) | |
elif isinstance(callback, str) and callback == "lakera_prompt_injection": | |
from litellm.proxy.guardrails.guardrail_hooks.lakera_ai import ( | |
lakeraAI_Moderation, | |
) | |
init_params = {} | |
if "lakera_prompt_injection" in callback_specific_params: | |
init_params = callback_specific_params["lakera_prompt_injection"] | |
lakera_moderations_object = lakeraAI_Moderation(**init_params) | |
imported_list.append(lakera_moderations_object) | |
elif isinstance(callback, str) and callback == "aporia_prompt_injection": | |
from litellm.proxy.guardrails.guardrail_hooks.aporia_ai import ( | |
AporiaGuardrail, | |
) | |
aporia_guardrail_object = AporiaGuardrail() | |
imported_list.append(aporia_guardrail_object) | |
elif isinstance(callback, str) and callback == "google_text_moderation": | |
from enterprise.enterprise_hooks.google_text_moderation import ( | |
_ENTERPRISE_GoogleTextModeration, | |
) | |
if premium_user is not True: | |
raise Exception( | |
"Trying to use Google Text Moderation" | |
+ CommonProxyErrors.not_premium_user.value | |
) | |
google_text_moderation_obj = _ENTERPRISE_GoogleTextModeration() | |
imported_list.append(google_text_moderation_obj) | |
elif isinstance(callback, str) and callback == "llmguard_moderations": | |
from enterprise.enterprise_hooks.llm_guard import _ENTERPRISE_LLMGuard | |
if premium_user is not True: | |
raise Exception( | |
"Trying to use Llm Guard" | |
+ CommonProxyErrors.not_premium_user.value | |
) | |
llm_guard_moderation_obj = _ENTERPRISE_LLMGuard() | |
imported_list.append(llm_guard_moderation_obj) | |
elif isinstance(callback, str) and callback == "blocked_user_check": | |
from enterprise.enterprise_hooks.blocked_user_list import ( | |
_ENTERPRISE_BlockedUserList, | |
) | |
if premium_user is not True: | |
raise Exception( | |
"Trying to use ENTERPRISE BlockedUser" | |
+ CommonProxyErrors.not_premium_user.value | |
) | |
blocked_user_list = _ENTERPRISE_BlockedUserList( | |
prisma_client=prisma_client | |
) | |
imported_list.append(blocked_user_list) | |
elif isinstance(callback, str) and callback == "banned_keywords": | |
from enterprise.enterprise_hooks.banned_keywords import ( | |
_ENTERPRISE_BannedKeywords, | |
) | |
if premium_user is not True: | |
raise Exception( | |
"Trying to use ENTERPRISE BannedKeyword" | |
+ CommonProxyErrors.not_premium_user.value | |
) | |
banned_keywords_obj = _ENTERPRISE_BannedKeywords() | |
imported_list.append(banned_keywords_obj) | |
elif isinstance(callback, str) and callback == "detect_prompt_injection": | |
from litellm.proxy.hooks.prompt_injection_detection import ( | |
_OPTIONAL_PromptInjectionDetection, | |
) | |
prompt_injection_params = None | |
if "prompt_injection_params" in litellm_settings: | |
prompt_injection_params_in_config = litellm_settings[ | |
"prompt_injection_params" | |
] | |
prompt_injection_params = LiteLLMPromptInjectionParams( | |
**prompt_injection_params_in_config | |
) | |
prompt_injection_detection_obj = _OPTIONAL_PromptInjectionDetection( | |
prompt_injection_params=prompt_injection_params, | |
) | |
imported_list.append(prompt_injection_detection_obj) | |
elif isinstance(callback, str) and callback == "batch_redis_requests": | |
from litellm.proxy.hooks.batch_redis_get import ( | |
_PROXY_BatchRedisRequests, | |
) | |
batch_redis_obj = _PROXY_BatchRedisRequests() | |
imported_list.append(batch_redis_obj) | |
elif isinstance(callback, str) and callback == "azure_content_safety": | |
from litellm.proxy.hooks.azure_content_safety import ( | |
_PROXY_AzureContentSafety, | |
) | |
azure_content_safety_params = litellm_settings[ | |
"azure_content_safety_params" | |
] | |
for k, v in azure_content_safety_params.items(): | |
if ( | |
v is not None | |
and isinstance(v, str) | |
and v.startswith("os.environ/") | |
): | |
azure_content_safety_params[k] = get_secret(v) | |
azure_content_safety_obj = _PROXY_AzureContentSafety( | |
**azure_content_safety_params, | |
) | |
imported_list.append(azure_content_safety_obj) | |
else: | |
verbose_proxy_logger.debug( | |
f"{blue_color_code} attempting to import custom calback={callback} {reset_color_code}" | |
) | |
imported_list.append( | |
get_instance_fn( | |
value=callback, | |
config_file_path=config_file_path, | |
) | |
) | |
if isinstance(litellm.callbacks, list): | |
litellm.callbacks.extend(imported_list) | |
else: | |
litellm.callbacks = imported_list # type: ignore | |
if "prometheus" in value: | |
from litellm.integrations.prometheus import PrometheusLogger | |
PrometheusLogger._mount_metrics_endpoint(premium_user) | |
else: | |
litellm.callbacks = [ | |
get_instance_fn( | |
value=value, | |
config_file_path=config_file_path, | |
) | |
] | |
verbose_proxy_logger.debug( | |
f"{blue_color_code} Initialized Callbacks - {litellm.callbacks} {reset_color_code}" | |
) | |
def get_model_group_from_litellm_kwargs(kwargs: dict) -> Optional[str]: | |
_litellm_params = kwargs.get("litellm_params", None) or {} | |
_metadata = _litellm_params.get("metadata", None) or {} | |
_model_group = _metadata.get("model_group", None) | |
if _model_group is not None: | |
return _model_group | |
return None | |
def get_model_group_from_request_data(data: dict) -> Optional[str]: | |
_metadata = data.get("metadata", None) or {} | |
_model_group = _metadata.get("model_group", None) | |
if _model_group is not None: | |
return _model_group | |
return None | |
def get_remaining_tokens_and_requests_from_request_data(data: Dict) -> Dict[str, str]: | |
""" | |
Helper function to return x-litellm-key-remaining-tokens-{model_group} and x-litellm-key-remaining-requests-{model_group} | |
Returns {} when api_key + model rpm/tpm limit is not set | |
""" | |
headers = {} | |
_metadata = data.get("metadata", None) or {} | |
model_group = get_model_group_from_request_data(data) | |
# Remaining Requests | |
remaining_requests_variable_name = f"litellm-key-remaining-requests-{model_group}" | |
remaining_requests = _metadata.get(remaining_requests_variable_name, None) | |
if remaining_requests: | |
headers[f"x-litellm-key-remaining-requests-{model_group}"] = remaining_requests | |
# Remaining Tokens | |
remaining_tokens_variable_name = f"litellm-key-remaining-tokens-{model_group}" | |
remaining_tokens = _metadata.get(remaining_tokens_variable_name, None) | |
if remaining_tokens: | |
headers[f"x-litellm-key-remaining-tokens-{model_group}"] = remaining_tokens | |
return headers | |
def get_logging_caching_headers(request_data: Dict) -> Optional[Dict]: | |
_metadata = request_data.get("metadata", None) or {} | |
headers = {} | |
if "applied_guardrails" in _metadata: | |
headers["x-litellm-applied-guardrails"] = ",".join( | |
_metadata["applied_guardrails"] | |
) | |
if "semantic-similarity" in _metadata: | |
headers["x-litellm-semantic-similarity"] = str(_metadata["semantic-similarity"]) | |
return headers | |
def add_guardrail_to_applied_guardrails_header( | |
request_data: Dict, guardrail_name: Optional[str] | |
): | |
if guardrail_name is None: | |
return | |
_metadata = request_data.get("metadata", None) or {} | |
if "applied_guardrails" in _metadata: | |
_metadata["applied_guardrails"].append(guardrail_name) | |
else: | |
_metadata["applied_guardrails"] = [guardrail_name] | |