import gradio as gr import spaces from transformers import pipeline import os import torch print(torch.cuda.is_available()) device = 'cuda' if torch.cuda.is_available() else 'cpu' summarizer = pipeline("summarization", model="ShynBui/Bartpho_spelling_correction", device=device) # @spaces.GPU def generate(prompt): return summarizer(prompt, max_new_tokens = 512)[0]['summary_text'] gr.Interface( fn=generate, inputs=gr.Text(), outputs=gr.Text(), examples= eval(os.environ['DES_EXAMPLE']) ).launch()