Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,12 @@ import torch
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
5 |
-
|
|
|
6 |
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
7 |
tokenizer = T5Tokenizer.from_pretrained(model_path)
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
def summarize_text(text,max_length):
|
12 |
-
print(max_length)
|
13 |
# Preprocess the text
|
14 |
inputs = tokenizer.encode(
|
15 |
"summarize: " + text,
|
@@ -19,27 +17,30 @@ def summarize_text(text,max_length):
|
|
19 |
padding='max_length'
|
20 |
)
|
21 |
|
22 |
-
# Validate max_length
|
23 |
-
# if not isinstance(max_length, int) or max_length <= 0:
|
24 |
-
# max_length = 50
|
25 |
-
|
26 |
# Generate the summary
|
27 |
summary_ids = model.generate(
|
28 |
inputs,
|
29 |
-
max_length=max_length+2,
|
30 |
min_length=max_length,
|
31 |
num_beams=5,
|
32 |
)
|
33 |
-
print(summary_ids)
|
34 |
|
35 |
-
# Decode
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
interface = gr.Interface(
|
39 |
fn=summarize_text,
|
40 |
inputs=[
|
41 |
gr.Textbox(lines=10, placeholder='Enter Text Here...', label='Input text'),
|
42 |
-
gr.Slider(minimum=10, maximum=150, step=1, label='Max Length')
|
|
|
43 |
],
|
44 |
outputs=gr.Textbox(label='Summarized Text'),
|
45 |
title='Text Summarizer using T5-finetuned-dialogue_sumxx',
|
@@ -50,5 +51,3 @@ interface = gr.Interface(
|
|
50 |
)
|
51 |
|
52 |
interface.launch()
|
53 |
-
|
54 |
-
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
5 |
+
|
6 |
+
model_path = 'Sibinraj/T5-finetuned-dialogue_sumxx'
|
7 |
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
8 |
tokenizer = T5Tokenizer.from_pretrained(model_path)
|
9 |
|
10 |
+
def summarize_text(text, max_length, show_length):
|
|
|
|
|
|
|
11 |
# Preprocess the text
|
12 |
inputs = tokenizer.encode(
|
13 |
"summarize: " + text,
|
|
|
17 |
padding='max_length'
|
18 |
)
|
19 |
|
|
|
|
|
|
|
|
|
20 |
# Generate the summary
|
21 |
summary_ids = model.generate(
|
22 |
inputs,
|
23 |
+
max_length=max_length + 2,
|
24 |
min_length=max_length,
|
25 |
num_beams=5,
|
26 |
)
|
|
|
27 |
|
28 |
+
# Decode the summary
|
29 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
30 |
+
|
31 |
+
# If show_length is True, append the length of the summary
|
32 |
+
if show_length:
|
33 |
+
summary_length = len(summary.split())
|
34 |
+
summary = f"{summary}\n\n(Summary length: {summary_length} words)"
|
35 |
+
|
36 |
+
return summary
|
37 |
|
38 |
interface = gr.Interface(
|
39 |
fn=summarize_text,
|
40 |
inputs=[
|
41 |
gr.Textbox(lines=10, placeholder='Enter Text Here...', label='Input text'),
|
42 |
+
gr.Slider(minimum=10, maximum=150, step=1, label='Max Length'),
|
43 |
+
gr.Checkbox(label='Show summary length')
|
44 |
],
|
45 |
outputs=gr.Textbox(label='Summarized Text'),
|
46 |
title='Text Summarizer using T5-finetuned-dialogue_sumxx',
|
|
|
51 |
)
|
52 |
|
53 |
interface.launch()
|
|
|
|