Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,23 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
4 |
-
import fitz
|
5 |
|
|
|
6 |
model_path = 'Sibinraj/T5-finetuned-dialogue_sumxx'
|
7 |
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
8 |
tokenizer = T5Tokenizer.from_pretrained(model_path)
|
9 |
|
10 |
def extract_text_from_pdf(pdf_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
text = ""
|
12 |
with fitz.open(pdf_path) as doc:
|
13 |
for page in doc:
|
@@ -15,6 +25,17 @@ def extract_text_from_pdf(pdf_path):
|
|
15 |
return text
|
16 |
|
17 |
def summarize_text(text, max_length, show_length):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
inputs = tokenizer.encode(
|
19 |
"summarize: " + text,
|
20 |
return_tensors='pt',
|
@@ -25,8 +46,8 @@ def summarize_text(text, max_length, show_length):
|
|
25 |
|
26 |
summary_ids = model.generate(
|
27 |
inputs,
|
28 |
-
max_length=max_length + 20,
|
29 |
-
min_length=10,
|
30 |
num_beams=5,
|
31 |
no_repeat_ngram_size=2,
|
32 |
early_stopping=True
|
@@ -56,9 +77,21 @@ def summarize_text(text, max_length, show_length):
|
|
56 |
return summary
|
57 |
|
58 |
def handle_pdf(pdf, max_length, show_length):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
text = extract_text_from_pdf(pdf.name)
|
60 |
return summarize_text(text, max_length, show_length)
|
61 |
|
|
|
62 |
interface = gr.Interface(
|
63 |
fn=handle_pdf,
|
64 |
inputs=[
|
@@ -70,4 +103,5 @@ interface = gr.Interface(
|
|
70 |
title='PDF Text Summarizer using T5-finetuned-dialogue_sumxx'
|
71 |
)
|
72 |
|
|
|
73 |
interface.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
4 |
+
import fitz
|
5 |
|
6 |
+
# Load the model and tokenizer
|
7 |
model_path = 'Sibinraj/T5-finetuned-dialogue_sumxx'
|
8 |
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
9 |
tokenizer = T5Tokenizer.from_pretrained(model_path)
|
10 |
|
11 |
def extract_text_from_pdf(pdf_path):
|
12 |
+
"""
|
13 |
+
Extracts text from a given PDF file.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
pdf_path (str): Path to the PDF file.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
str: Extracted text from the PDF.
|
20 |
+
"""
|
21 |
text = ""
|
22 |
with fitz.open(pdf_path) as doc:
|
23 |
for page in doc:
|
|
|
25 |
return text
|
26 |
|
27 |
def summarize_text(text, max_length, show_length):
|
28 |
+
"""
|
29 |
+
Summarizes the given text using a T5 model.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
text (str): The text to summarize.
|
33 |
+
max_length (int): The maximum length of the summary.
|
34 |
+
show_length (bool): Whether to show the length of the summary.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
str: The summarized text.
|
38 |
+
"""
|
39 |
inputs = tokenizer.encode(
|
40 |
"summarize: " + text,
|
41 |
return_tensors='pt',
|
|
|
46 |
|
47 |
summary_ids = model.generate(
|
48 |
inputs,
|
49 |
+
max_length=max_length + 20, # Allow some buffer
|
50 |
+
min_length=10,
|
51 |
num_beams=5,
|
52 |
no_repeat_ngram_size=2,
|
53 |
early_stopping=True
|
|
|
77 |
return summary
|
78 |
|
79 |
def handle_pdf(pdf, max_length, show_length):
|
80 |
+
"""
|
81 |
+
Handles the PDF upload, extracts text, and summarizes it.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
pdf (UploadedFile): The uploaded PDF file.
|
85 |
+
max_length (int): The maximum length of the summary.
|
86 |
+
show_length (bool): Whether to show the length of the summary.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
str: The summarized text.
|
90 |
+
"""
|
91 |
text = extract_text_from_pdf(pdf.name)
|
92 |
return summarize_text(text, max_length, show_length)
|
93 |
|
94 |
+
# Define the Gradio interface
|
95 |
interface = gr.Interface(
|
96 |
fn=handle_pdf,
|
97 |
inputs=[
|
|
|
103 |
title='PDF Text Summarizer using T5-finetuned-dialogue_sumxx'
|
104 |
)
|
105 |
|
106 |
+
# Launch the Gradio interface
|
107 |
interface.launch()
|