File size: 6,543 Bytes
a95d150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import pickle
import numpy as np 
import streamlit as  st 
import cv2
import tensorflow as tf
from tqdm import tqdm 
from PIL import Image
import os 
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.saving import load_model

st.title("DL-Classifier")

task = st.selectbox('Select One',("Choose any","Sentiment Classification", 'Tumor Detection'))


#choosing tumor detection
#CNN
if task=="Tumor Detection":
     st.subheader("Tumor Detection")
     model_path = os.path.join(os.getcwd(), 'cnn_model.h5')
     cnn_model = load_model(model_path)

     img =st.file_uploader("choose the image",type=('jpg','jpeg','png'))
     def cnn_make_prediction(img,cnn_model):
            img=Image.open(img)
            img=img.resize((128,128))
            img=np.array(img)
            input_img = np.expand_dims(img, axis=0)
            res = cnn_model.predict(input_img)
            if res:
                return"Tumor"
            else:
               return"No Tumor"
     #if img != None:
         #img_f="D:/SEM 3/DL/DL-ALGORITHMS/CNN/tumor_detection/tumordata/"
         #sub_dir=os.listdir(img_f)
         # cel_path=os.path.join(sub_dir,img_f)DL-models/app.py
         #cel_img=os.listdir(cel_path)
         #img_p=cel_img + img.name
         #pred=cnn_make_prediction(img_p,cnn_model)
         #st.write(pred)

     if img is not None:
        
        st.image(img, caption="Uploaded Image.", use_column_width=False, width=200)
        st.write("")

        if st.button("Detect Tumor"):
            result =cnn_make_prediction(img, cnn_model)
            st.subheader("Tumor Detection Result")
            st.write(f"**{result}**")


#choosing sentiment classification 

if task=="Sentiment Classification":
     st.subheader("Sentiment Classification")
     clss_model= st.radio("Select Classification Model:",("RNN","DNN","Backpropagation",'Perceptron','LSTM'))
     select_model=None

     if clss_model=="RNN":
     
          model_path = os.path.join(os.getcwd(), 'rnn_model.h5')
          rnn_model = load_model(model_path)
          with open("rnn_tokeniser.pkl",'rb') as tokeniser_file:
                rnn_tokeniser=pickle.load(tokeniser_file)
                
                st.subheader('RNN Spam Classification')
                
                input=st.text_area("Enter your message here:")
                def rnn_pred(input):
                    max_length=10
                    encoded_test = rnn_tokeniser.texts_to_sequences(input)
                    padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=max_length, padding='post') 
                    predict= (rnn_model.predict(padded_test) > 0.5).astype("int32")
                    if predict:
                         return "Spam "
                    else: 
                         return "Not Spam"        
                if st.button('Check'):
                    pred=rnn_pred([input]) 
                    st.write(pred)

     if clss_model=='Perceptron':
          with open("perceptron_model_saved.pkl",'rb') as model_file:
               percep_model=pickle.load(model_file)
          with open('perceptron_tokeniser_saved.pkl','rb') as model_file:
               percep_token=pickle.load(model_file)
          st.subheader('Perceptron Spam Classification')
          input= st.text_area("Enter your text here")

          def percep_pred(input):
               encoded_test_p = percep_token.texts_to_sequences([input])
               padded_test_p = tf.keras.preprocessing.sequence.pad_sequences(encoded_test_p, maxlen=10) 
               predict_p= percep_model.predict(padded_test_p)
               if predict_p:
                    return "Spam"
               else:
                    return "Not Spam"
          if st.button("Check"):
               pred=percep_pred([input])
               st.write(pred)

     
     if clss_model=="Backpropagation":
          with open('bp_model.pkl','rb') as model_file:
               bp_model=pickle.load(model_file)
          with open('backrpop_tokeniser.pkl','rb') as model_file:
               bp_tokeniser=pickle.load(model_file)
          st.subheader('Movie Review Classification using Backpropagation')
          inp = st.text_area('Enter message')
          def bp_make_predictions(inp, model):
               encoded_inp = bp_tokeniser.texts_to_sequences([inp])
               padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500)
               res = model.predict(padded_inp)
               if res:
                    return "Negative"
               else:
                    return "Positive"        
        
          if st.button('Check'):
               pred = bp_make_predictions([inp], bp_model)
               st.write(pred)

     if clss_model=="DNN":
          
          model_path = os.path.join(os.getcwd(), 'dnn_model.h5')
          dnn_model = load_model(model_path)
          with open("dnn_tokeniser.pkl",'rb') as file:
               dnn_tokeniser = pickle.load(file)

          st.subheader('SMS Spam Classification using DNN')
          inp = st.text_area('Enter message')
        
          def dnn_make_predictions(inp, model):
               encoded_inp = dnn_tokeniser.texts_to_sequences(inp)
               padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
               res = (model.predict(padded_inp) > 0.5).astype("int32")
               if res:
                    return "Spam"
               else:
                    return "Not Spam"     
        
          if st.button('Check'):
               pred = dnn_make_predictions([inp], dnn_model)
               st.write(pred)
          
     if clss_model=="LSTM":
          model_path = os.path.join(os.getcwd(), 'lstm_model.h5')
          lstm_model = load_model(model_path)

          with open("lstm_tokeniser.pkl",'rb') as file:
               lstm_tokeniser=pickle.load(file)
          st.subheader('Movie Review Classification')
          inp=st.text_area("Enter your review")
          def lstm_make_predictions(inp, model):
               inp = lstm_tokeniser.texts_to_sequences(inp)
               inp = sequence.pad_sequences(inp, maxlen=500)
               res = (model.predict(inp) > 0.5).astype("int32")
               if res:
                    return "Negative"
               else:
                    return "Positive"

          
          if st.button('Check'):
               pred = lstm_make_predictions([inp], lstm_model)
               st.write(pred)