Spaces:
Sleeping
Sleeping
File size: 6,543 Bytes
a95d150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import pickle
import numpy as np
import streamlit as st
import cv2
import tensorflow as tf
from tqdm import tqdm
from PIL import Image
import os
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.saving import load_model
st.title("DL-Classifier")
task = st.selectbox('Select One',("Choose any","Sentiment Classification", 'Tumor Detection'))
#choosing tumor detection
#CNN
if task=="Tumor Detection":
st.subheader("Tumor Detection")
model_path = os.path.join(os.getcwd(), 'cnn_model.h5')
cnn_model = load_model(model_path)
img =st.file_uploader("choose the image",type=('jpg','jpeg','png'))
def cnn_make_prediction(img,cnn_model):
img=Image.open(img)
img=img.resize((128,128))
img=np.array(img)
input_img = np.expand_dims(img, axis=0)
res = cnn_model.predict(input_img)
if res:
return"Tumor"
else:
return"No Tumor"
#if img != None:
#img_f="D:/SEM 3/DL/DL-ALGORITHMS/CNN/tumor_detection/tumordata/"
#sub_dir=os.listdir(img_f)
# cel_path=os.path.join(sub_dir,img_f)DL-models/app.py
#cel_img=os.listdir(cel_path)
#img_p=cel_img + img.name
#pred=cnn_make_prediction(img_p,cnn_model)
#st.write(pred)
if img is not None:
st.image(img, caption="Uploaded Image.", use_column_width=False, width=200)
st.write("")
if st.button("Detect Tumor"):
result =cnn_make_prediction(img, cnn_model)
st.subheader("Tumor Detection Result")
st.write(f"**{result}**")
#choosing sentiment classification
if task=="Sentiment Classification":
st.subheader("Sentiment Classification")
clss_model= st.radio("Select Classification Model:",("RNN","DNN","Backpropagation",'Perceptron','LSTM'))
select_model=None
if clss_model=="RNN":
model_path = os.path.join(os.getcwd(), 'rnn_model.h5')
rnn_model = load_model(model_path)
with open("rnn_tokeniser.pkl",'rb') as tokeniser_file:
rnn_tokeniser=pickle.load(tokeniser_file)
st.subheader('RNN Spam Classification')
input=st.text_area("Enter your message here:")
def rnn_pred(input):
max_length=10
encoded_test = rnn_tokeniser.texts_to_sequences(input)
padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=max_length, padding='post')
predict= (rnn_model.predict(padded_test) > 0.5).astype("int32")
if predict:
return "Spam "
else:
return "Not Spam"
if st.button('Check'):
pred=rnn_pred([input])
st.write(pred)
if clss_model=='Perceptron':
with open("perceptron_model_saved.pkl",'rb') as model_file:
percep_model=pickle.load(model_file)
with open('perceptron_tokeniser_saved.pkl','rb') as model_file:
percep_token=pickle.load(model_file)
st.subheader('Perceptron Spam Classification')
input= st.text_area("Enter your text here")
def percep_pred(input):
encoded_test_p = percep_token.texts_to_sequences([input])
padded_test_p = tf.keras.preprocessing.sequence.pad_sequences(encoded_test_p, maxlen=10)
predict_p= percep_model.predict(padded_test_p)
if predict_p:
return "Spam"
else:
return "Not Spam"
if st.button("Check"):
pred=percep_pred([input])
st.write(pred)
if clss_model=="Backpropagation":
with open('bp_model.pkl','rb') as model_file:
bp_model=pickle.load(model_file)
with open('backrpop_tokeniser.pkl','rb') as model_file:
bp_tokeniser=pickle.load(model_file)
st.subheader('Movie Review Classification using Backpropagation')
inp = st.text_area('Enter message')
def bp_make_predictions(inp, model):
encoded_inp = bp_tokeniser.texts_to_sequences([inp])
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Negative"
else:
return "Positive"
if st.button('Check'):
pred = bp_make_predictions([inp], bp_model)
st.write(pred)
if clss_model=="DNN":
model_path = os.path.join(os.getcwd(), 'dnn_model.h5')
dnn_model = load_model(model_path)
with open("dnn_tokeniser.pkl",'rb') as file:
dnn_tokeniser = pickle.load(file)
st.subheader('SMS Spam Classification using DNN')
inp = st.text_area('Enter message')
def dnn_make_predictions(inp, model):
encoded_inp = dnn_tokeniser.texts_to_sequences(inp)
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
res = (model.predict(padded_inp) > 0.5).astype("int32")
if res:
return "Spam"
else:
return "Not Spam"
if st.button('Check'):
pred = dnn_make_predictions([inp], dnn_model)
st.write(pred)
if clss_model=="LSTM":
model_path = os.path.join(os.getcwd(), 'lstm_model.h5')
lstm_model = load_model(model_path)
with open("lstm_tokeniser.pkl",'rb') as file:
lstm_tokeniser=pickle.load(file)
st.subheader('Movie Review Classification')
inp=st.text_area("Enter your review")
def lstm_make_predictions(inp, model):
inp = lstm_tokeniser.texts_to_sequences(inp)
inp = sequence.pad_sequences(inp, maxlen=500)
res = (model.predict(inp) > 0.5).astype("int32")
if res:
return "Negative"
else:
return "Positive"
if st.button('Check'):
pred = lstm_make_predictions([inp], lstm_model)
st.write(pred)
|