dl-classifiers / app.py
Sibinraj's picture
Upload 15 files
744ebd6
raw
history blame
5.85 kB
import pickle
import numpy as np
import streamlit as st
import cv2
import tensorflow as tf
from tqdm import tqdm
from PIL import Image
import os
from tensorflow.keras.preprocessing import sequence
st.title("DL-Classifier")
task1 = st.selectbox('Select One',("Choose any","Sentiment Classification", 'Tumor Detection'))
#choosing tumor detection
#CNN
if task1=="Tumor Detection":
st.subheader("Tumor Detection")
with open("tumor_detection_model.pkl", "rb") as model_file:
cnn_model = pickle.load(model_file)
img =st.file_uploader("choose the image",type=('jpg','jpeg','png'))
def cnn_make_prediction(img,cnn_model):
img=Image.open(img)
img=img.resize((128,128))
img=np.array(img)
input_img = np.expand_dims(img, axis=0)
res = cnn_model.predict(input_img)
if res:
return"Tumor"
else:
return"No Tumor"
if img != None:
img_f="D:/SEM 3/DL/DL-ALGORITHMS/CNN/tumor_detection/tumordata/pred/"
img_p=img_f + img.name
pred=cnn_make_prediction(img_p,cnn_model)
st.write(pred)
#choosing classification
if task1=="Sentiment Classification":
st.subheader("Sentiment Classification")
clss_model= st.radio("Select Classification Model:",("RNN","DNN","Backpropagation",'Perceptron','LSTM'))
select_model=None
if clss_model=="RNN":
with open("rnn_model.pkl",'rb') as model_file:
rnn_model=pickle.load(model_file)
with open("rnn_tokeniser.pkl",'rb') as tokeniser_file:
rnn_tokeniser=pickle.load(tokeniser_file)
st.subheader('Spam Classification')
input=st.text_input("Enter your message here:")
def rnn_pred(input):
max_length=10
encoded_test = rnn_tokeniser.texts_to_sequences(input)
padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=max_length, padding='post')
predict= (rnn_model.predict(padded_test) > 0.5).astype("int32")
if predict:
return "Spam "
else:
return "Not Spam"
if st.button('Check'):
pred=rnn_pred([input])
st.write(pred)
if clss_model=='Perceptron':
with open("perceptron_model_saved.pkl",'rb') as model_file:
percep_model=pickle.load(model_file)
with open('perceptron_tokeniser_saved.pkl','rb') as model_file:
percep_token=pickle.load(model_file)
st.subheader('Spam Classification')
input= st.text_input("Enter your text here")
def percep_pred(input):
encoded_test_p = percep_token.texts_to_sequences([input])
padded_test_p = tf.keras.preprocessing.sequence.pad_sequences(encoded_test_p, maxlen=10)
predict_p= percep_model.predict(padded_test_p)
if predict_p:
return "Spam"
else:
return "Not Spam"
if st.button("Check"):
percep_pred([input])
if clss_model=="Backpropagation":
with open('backprop_model.pkl','rb') as model_file:
bp_model=pickle.load(model_file)
with open('backrpop_tokeniser.pkl','rb') as model_file:
bp_tokeniser=pickle.load(model_file)
st.subheader('Spam Classification')
input= st.text_input("Enter your text here")
def back_pred(input):
encoded_test = bp_tokeniser.texts_to_sequences([input])
padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=10)
predict= bp_model.predict(padded_test)
if predict:
return "Spam"
else:
return "Not Spam"
if st.button("Check"):
back_pred([input])
if clss_model=="DNN":
with open("dnn_model.pkl",'rb') as file:
dnn_model=pickle.load(file)
with open("dnn_tokeniser.pkl",'rb') as file:
dnn_tokeniser=pickle.load(file)
st.subheader('Spam Classification')
input= st.text_input("Enter your text here")
def dnn_pred(input):
encoded_test = dnn_tokeniser.texts_to_sequences([input])
padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=500)
predict= dnn_model.predict(padded_test)
if predict:
return "Spam"
else:
return "Not Spam"
if st.button('Check'):
pred=dnn_pred([input])
st.write(pred)
if clss_model=="LSTM":
with open("lstm_model.pkl",'rb') as file:
lstm_model=pickle.load(file)
with open("lstm_tokeniser.pkl",'rb') as file:
lstm_tokeniser=pickle.load(file)
st.subheader('Movie Review Classification')
inp=st.text_area("Enter your review")
def lstm_make_predictions(inp, model):
inp = lstm_tokeniser.texts_to_sequences(inp)
inp = sequence.pad_sequences(inp, maxlen=500)
res = (model.predict(inp) > 0.5).astype("int32")
if res:
return "Negative"
else:
return "Positive"
if st.button('Check'):
pred = lstm_make_predictions([inp], lstm_model)
st.write(pred)