Sibinraj commited on
Commit
22ccf6a
·
1 Parent(s): fcb5859

Delete BackPropogation1.py

Browse files
Files changed (1) hide show
  1. BackPropogation1.py +0 -53
BackPropogation1.py DELETED
@@ -1,53 +0,0 @@
1
- import numpy as np
2
- from tqdm import tqdm
3
-
4
-
5
- class BackPropogation:
6
- def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
7
- self.bias = 0
8
- self.learning_rate = learning_rate
9
- self.max_epochs = epochs
10
- self.activation_function = activation_function
11
-
12
-
13
- def activate(self, x):
14
- if self.activation_function == 'step':
15
- return 1 if x >= 0 else 0
16
- elif self.activation_function == 'sigmoid':
17
- return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
18
- elif self.activation_function == 'relu':
19
- return 1 if max(0,x)>=0.5 else 0
20
-
21
- def fit(self, X, y):
22
- error_sum=0
23
- n_features = X.shape[1]
24
- self.weights = np.zeros((n_features))
25
- for epoch in tqdm(range(self.max_epochs)):
26
- for i in range(len(X)):
27
- inputs = X[i]
28
- target = y[i]
29
- weighted_sum = np.dot(inputs, self.weights) + self.bias
30
- prediction = self.activate(weighted_sum)
31
-
32
- # Calculating loss and updating weights.
33
- error = target - prediction
34
- self.weights += self.learning_rate * error * inputs
35
- self.bias += self.learning_rate * error
36
-
37
- print(f"Updated Weights after epoch {epoch} with {self.weights}")
38
- print("Training Completed")
39
-
40
- def predict(self, X):
41
- predictions = []
42
- for i in range(len(X)):
43
- inputs = X[i]
44
- weighted_sum = np.dot(inputs, self.weights) + self.bias
45
- prediction = self.activate(weighted_sum)
46
- predictions.append(prediction)
47
- return predictions
48
-
49
-
50
-
51
-
52
-
53
-