Sibinraj commited on
Commit
8e32caf
·
1 Parent(s): 906eee3

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -159
app.py DELETED
@@ -1,159 +0,0 @@
1
- import pickle
2
- import numpy as np
3
- import streamlit as st
4
- import cv2
5
- import tensorflow as tf
6
- from tqdm import tqdm
7
- from PIL import Image
8
- import os
9
- from tensorflow.keras.preprocessing import sequence
10
-
11
- st.title("DL-Classifier")
12
-
13
- task1 = st.selectbox('Select One',("Choose any","Sentiment Classification", 'Tumor Detection'))
14
-
15
-
16
- #choosing tumor detection
17
- #CNN
18
- if task1=="Tumor Detection":
19
- st.subheader("Tumor Detection")
20
- with open("tumor_detection_model.pkl", "rb") as model_file:
21
- cnn_model = pickle.load(model_file)
22
-
23
- img =st.file_uploader("choose the image",type=('jpg','jpeg','png'))
24
- def cnn_make_prediction(img,cnn_model):
25
- img=Image.open(img)
26
- img=img.resize((128,128))
27
- img=np.array(img)
28
- input_img = np.expand_dims(img, axis=0)
29
- res = cnn_model.predict(input_img)
30
- if res:
31
- return"Tumor"
32
- else:
33
- return"No Tumor"
34
- if img != None:
35
- img_f="D:/SEM 3/DL/DL-ALGORITHMS/CNN/tumor_detection/tumordata/pred/"
36
- img_p=img_f + img.name
37
- pred=cnn_make_prediction(img_p,cnn_model)
38
- st.write(pred)
39
-
40
-
41
- #choosing classification
42
-
43
-
44
- if task1=="Sentiment Classification":
45
- st.subheader("Sentiment Classification")
46
- clss_model= st.radio("Select Classification Model:",("RNN","DNN","Backpropagation",'Perceptron','LSTM'))
47
- select_model=None
48
-
49
- if clss_model=="RNN":
50
- with open("rnn_model.pkl",'rb') as model_file:
51
- rnn_model=pickle.load(model_file)
52
- with open("rnn_tokeniser.pkl",'rb') as tokeniser_file:
53
- rnn_tokeniser=pickle.load(tokeniser_file)
54
-
55
- st.subheader('Spam Classification')
56
-
57
- input=st.text_input("Enter your message here:")
58
- def rnn_pred(input):
59
- max_length=10
60
- encoded_test = rnn_tokeniser.texts_to_sequences(input)
61
- padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=max_length, padding='post')
62
- predict= (rnn_model.predict(padded_test) > 0.5).astype("int32")
63
- if predict:
64
- return "Spam "
65
- else:
66
- return "Not Spam"
67
- if st.button('Check'):
68
- pred=rnn_pred([input])
69
- st.write(pred)
70
-
71
- if clss_model=='Perceptron':
72
- with open("perceptron_model_saved.pkl",'rb') as model_file:
73
- percep_model=pickle.load(model_file)
74
- with open('perceptron_tokeniser_saved.pkl','rb') as model_file:
75
- percep_token=pickle.load(model_file)
76
- st.subheader('Spam Classification')
77
- input= st.text_input("Enter your text here")
78
-
79
- def percep_pred(input):
80
- encoded_test_p = percep_token.texts_to_sequences([input])
81
- padded_test_p = tf.keras.preprocessing.sequence.pad_sequences(encoded_test_p, maxlen=10)
82
- predict_p= percep_model.predict(padded_test_p)
83
- if predict_p:
84
- return "Spam"
85
- else:
86
- return "Not Spam"
87
- if st.button("Check"):
88
- percep_pred([input])
89
-
90
-
91
- if clss_model=="Backpropagation":
92
- with open('backprop_model.pkl','rb') as model_file:
93
- bp_model=pickle.load(model_file)
94
- with open('backrpop_tokeniser.pkl','rb') as model_file:
95
- bp_tokeniser=pickle.load(model_file)
96
- st.subheader('Spam Classification')
97
- input= st.text_input("Enter your text here")
98
-
99
-
100
- def back_pred(input):
101
- encoded_test = bp_tokeniser.texts_to_sequences([input])
102
- padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=10)
103
- predict= bp_model.predict(padded_test)
104
- if predict:
105
- return "Spam"
106
- else:
107
- return "Not Spam"
108
- if st.button("Check"):
109
- back_pred([input])
110
-
111
- if clss_model=="DNN":
112
- with open("dnn_model.pkl",'rb') as file:
113
- dnn_model=pickle.load(file)
114
-
115
- with open("dnn_tokeniser.pkl",'rb') as file:
116
- dnn_tokeniser=pickle.load(file)
117
- st.subheader('Spam Classification')
118
- input= st.text_input("Enter your text here")
119
-
120
- def dnn_pred(input):
121
- encoded_test = dnn_tokeniser.texts_to_sequences([input])
122
- padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=500)
123
- predict= dnn_model.predict(padded_test)
124
- if predict:
125
- return "Spam"
126
- else:
127
- return "Not Spam"
128
- if st.button('Check'):
129
- pred=dnn_pred([input])
130
- st.write(pred)
131
-
132
-
133
- if clss_model=="LSTM":
134
- with open("lstm_model.pkl",'rb') as file:
135
- lstm_model=pickle.load(file)
136
-
137
- with open("lstm_tokeniser.pkl",'rb') as file:
138
- lstm_tokeniser=pickle.load(file)
139
- st.subheader('Movie Review Classification')
140
- inp=st.text_area("Enter your review")
141
- def lstm_make_predictions(inp, model):
142
- inp = lstm_tokeniser.texts_to_sequences(inp)
143
- inp = sequence.pad_sequences(inp, maxlen=500)
144
- res = (model.predict(inp) > 0.5).astype("int32")
145
- if res:
146
- return "Negative"
147
- else:
148
- return "Positive"
149
-
150
-
151
- if st.button('Check'):
152
- pred = lstm_make_predictions([inp], lstm_model)
153
- st.write(pred)
154
-
155
-
156
-
157
-
158
-
159
-