Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,176 +0,0 @@
|
|
1 |
-
import pickle
|
2 |
-
import numpy as np
|
3 |
-
import streamlit as st
|
4 |
-
import cv2
|
5 |
-
import tensorflow as tf
|
6 |
-
from tqdm import tqdm
|
7 |
-
from PIL import Image
|
8 |
-
import os
|
9 |
-
from tensorflow.keras.preprocessing import sequence
|
10 |
-
from tensorflow.keras.saving import load_model
|
11 |
-
|
12 |
-
st.title("DL-Classifier")
|
13 |
-
|
14 |
-
task = st.selectbox('Select One',("Choose any","Sentiment Classification", 'Tumor Detection'))
|
15 |
-
|
16 |
-
|
17 |
-
#choosing tumor detection
|
18 |
-
#CNN
|
19 |
-
if task=="Tumor Detection":
|
20 |
-
st.subheader("Tumor Detection")
|
21 |
-
model_path = os.path.join(os.getcwd(), 'cnn_model.h5')
|
22 |
-
cnn_model = load_model(model_path)
|
23 |
-
|
24 |
-
img =st.file_uploader("choose the image",type=('jpg','jpeg','png'))
|
25 |
-
def cnn_make_prediction(img,cnn_model):
|
26 |
-
img=Image.open(img)
|
27 |
-
img=img.resize((128,128))
|
28 |
-
img=np.array(img)
|
29 |
-
input_img = np.expand_dims(img, axis=0)
|
30 |
-
res = cnn_model.predict(input_img)
|
31 |
-
if res:
|
32 |
-
return"Tumor"
|
33 |
-
else:
|
34 |
-
return"No Tumor"
|
35 |
-
#if img != None:
|
36 |
-
#img_f="D:/SEM 3/DL/DL-ALGORITHMS/CNN/tumor_detection/tumordata/"
|
37 |
-
#sub_dir=os.listdir(img_f)
|
38 |
-
# cel_path=os.path.join(sub_dir,img_f)DL-models/app.py
|
39 |
-
#cel_img=os.listdir(cel_path)
|
40 |
-
#img_p=cel_img + img.name
|
41 |
-
#pred=cnn_make_prediction(img_p,cnn_model)
|
42 |
-
#st.write(pred)
|
43 |
-
|
44 |
-
if img is not None:
|
45 |
-
|
46 |
-
st.image(img, caption="Uploaded Image.", use_column_width=False, width=200)
|
47 |
-
st.write("")
|
48 |
-
|
49 |
-
if st.button("Detect Tumor"):
|
50 |
-
result =cnn_make_prediction(img, cnn_model)
|
51 |
-
st.subheader("Tumor Detection Result")
|
52 |
-
st.write(f"**{result}**")
|
53 |
-
|
54 |
-
|
55 |
-
#choosing sentiment classification
|
56 |
-
|
57 |
-
if task=="Sentiment Classification":
|
58 |
-
st.subheader("Sentiment Classification")
|
59 |
-
clss_model= st.radio("Select Classification Model:",("RNN","DNN","Backpropagation",'Perceptron','LSTM'))
|
60 |
-
select_model=None
|
61 |
-
|
62 |
-
if clss_model=="RNN":
|
63 |
-
|
64 |
-
model_path = os.path.join(os.getcwd(), 'rnn_model.h5')
|
65 |
-
rnn_model = load_model(model_path)
|
66 |
-
with open("rnn_tokeniser.pkl",'rb') as tokeniser_file:
|
67 |
-
rnn_tokeniser=pickle.load(tokeniser_file)
|
68 |
-
|
69 |
-
st.subheader('RNN Spam Classification')
|
70 |
-
|
71 |
-
input=st.text_area("Enter your message here:")
|
72 |
-
def rnn_pred(input):
|
73 |
-
max_length=10
|
74 |
-
encoded_test = rnn_tokeniser.texts_to_sequences(input)
|
75 |
-
padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=max_length, padding='post')
|
76 |
-
predict= (rnn_model.predict(padded_test) > 0.5).astype("int32")
|
77 |
-
if predict:
|
78 |
-
return "Spam "
|
79 |
-
else:
|
80 |
-
return "Not Spam"
|
81 |
-
if st.button('Check'):
|
82 |
-
pred=rnn_pred([input])
|
83 |
-
st.write(pred)
|
84 |
-
|
85 |
-
if clss_model=='Perceptron':
|
86 |
-
with open("perceptron_model_saved.pkl",'rb') as model_file:
|
87 |
-
percep_model=pickle.load(model_file)
|
88 |
-
with open('perceptron_tokeniser_saved.pkl','rb') as model_file:
|
89 |
-
percep_token=pickle.load(model_file)
|
90 |
-
st.subheader('Perceptron Spam Classification')
|
91 |
-
input= st.text_area("Enter your text here")
|
92 |
-
|
93 |
-
def percep_pred(input):
|
94 |
-
encoded_test_p = percep_token.texts_to_sequences([input])
|
95 |
-
padded_test_p = tf.keras.preprocessing.sequence.pad_sequences(encoded_test_p, maxlen=10)
|
96 |
-
predict_p= percep_model.predict(padded_test_p)
|
97 |
-
if predict_p:
|
98 |
-
return "Spam"
|
99 |
-
else:
|
100 |
-
return "Not Spam"
|
101 |
-
if st.button("Check"):
|
102 |
-
pred=percep_pred([input])
|
103 |
-
st.write(pred)
|
104 |
-
|
105 |
-
|
106 |
-
if clss_model=="Backpropagation":
|
107 |
-
with open('bp_model.pkl','rb') as model_file:
|
108 |
-
bp_model=pickle.load(model_file)
|
109 |
-
with open('backrpop_tokeniser.pkl','rb') as model_file:
|
110 |
-
bp_tokeniser=pickle.load(model_file)
|
111 |
-
st.subheader('Backpropagation Spam Classification')
|
112 |
-
input= st.text_area("Enter your text here")
|
113 |
-
|
114 |
-
|
115 |
-
def back_pred(input):
|
116 |
-
encoded_test = bp_tokeniser.texts_to_sequences([input])
|
117 |
-
padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=10)
|
118 |
-
predict= bp_model.predict(padded_test)
|
119 |
-
if predict:
|
120 |
-
return "Spam"
|
121 |
-
else:
|
122 |
-
return "Not Spam"
|
123 |
-
if st.button("Check"):
|
124 |
-
pred=back_pred([input])
|
125 |
-
st.write(pred)
|
126 |
-
|
127 |
-
if clss_model=="DNN":
|
128 |
-
|
129 |
-
model_path = os.path.join(os.getcwd(), 'dnn_model.h5')
|
130 |
-
dnn_model = load_model(model_path)
|
131 |
-
|
132 |
-
with open("dnn_tokeniser.pkl",'rb') as file:
|
133 |
-
dnn_tokeniser=pickle.load(file)
|
134 |
-
st.subheader('DNN Spam Classification')
|
135 |
-
input= st.text_area("Enter your text here")
|
136 |
-
|
137 |
-
def dnn_pred(input):
|
138 |
-
encoded_test = dnn_tokeniser.texts_to_sequences([input])
|
139 |
-
padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=500)
|
140 |
-
predict= dnn_model.predict(padded_test)
|
141 |
-
if predict:
|
142 |
-
return "Spam"
|
143 |
-
else:
|
144 |
-
return "Not Spam"
|
145 |
-
if st.button('Check'):
|
146 |
-
pred=dnn_pred([input])
|
147 |
-
st.write(pred)
|
148 |
-
|
149 |
-
|
150 |
-
if clss_model=="LSTM":
|
151 |
-
model_path = os.path.join(os.getcwd(), 'lstm_model.h5')
|
152 |
-
lstm_model = load_model(model_path)
|
153 |
-
|
154 |
-
with open("lstm_tokeniser.pkl",'rb') as file:
|
155 |
-
lstm_tokeniser=pickle.load(file)
|
156 |
-
st.subheader('Movie Review Classification')
|
157 |
-
inp=st.text_area("Enter your review")
|
158 |
-
def lstm_make_predictions(inp, model):
|
159 |
-
inp = lstm_tokeniser.texts_to_sequences(inp)
|
160 |
-
inp = sequence.pad_sequences(inp, maxlen=500)
|
161 |
-
res = (model.predict(inp) > 0.5).astype("int32")
|
162 |
-
if res:
|
163 |
-
return "Negative"
|
164 |
-
else:
|
165 |
-
return "Positive"
|
166 |
-
|
167 |
-
|
168 |
-
if st.button('Check'):
|
169 |
-
pred = lstm_make_predictions([inp], lstm_model)
|
170 |
-
st.write(pred)
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|