Sidd065 commited on
Commit
5b034d2
·
1 Parent(s): 4ae5757

Refactor to use imgkit

Browse files
Files changed (4) hide show
  1. .gitignore +2 -0
  2. app.py +45 -151
  3. packages.txt +1 -0
  4. requirements.txt +2 -6
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ /venv
2
+ .env
app.py CHANGED
@@ -1,154 +1,48 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
+ import imgkit
3
+ from PIL import Image
4
+ from io import BytesIO
5
+
6
+ def html_to_image(html_code, width, height):
7
+ options = {
8
+ 'format': 'png',
9
+ 'width': str(width),
10
+ 'height': str(height),
11
+ 'encoding': "UTF-8"
12
+ }
13
+ image = Image.open(BytesIO(imgkit.from_string(html_code, False, options=options)))
14
+ return image
15
+
16
+ interface = gr.Interface(
17
+ fn=html_to_image,
18
+ inputs=[
19
+ gr.Code(
20
+ label="HTML Code",
21
+ language="html",
22
+ lines=30,
23
+ ),
24
+ gr.Number(
25
+ label="Width",
26
+ value=1280,
27
+ step=10,
28
+ info="Width in pixels (100-2000)"
29
+ ),
30
+ gr.Number(
31
+ label="Height",
32
+ value=720,
33
+ step=10,
34
+ info="Height in pixels (100-2000)"
35
+ )
36
+ ],
37
+ outputs=gr.Image(type="pil", label="Generated Image"),
38
+ title="HTML to Image Converter",
39
+ description="Enter HTML code and set dimensions to generate an image",
40
+ examples=[
41
+ ["<div style='background: linear-gradient(45deg, #ff6b6b, #4ecdc4); padding: 20px; border-radius: 10px;'><h1 style='color: white; font-family: Arial;'>Hello, World!</h1></div>", 800, 400],
42
+ ["<div style='background: #f0f0f0; padding: 20px;'><ul style='color: #333;'><li>Item 1</li><li>Item 2</li><li>Item 3</li></ul></div>", 600, 300]
43
+ ],
44
+ theme=gr.themes.Soft()
45
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  if __name__ == "__main__":
48
+ interface.launch()
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ wkhtmltopdf
requirements.txt CHANGED
@@ -1,6 +1,2 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
- torch
5
- transformers
6
- xformers
 
1
+ imgkit
2
+ gradio