Spaces:
Running
Running
File size: 12,436 Bytes
a4de739 01b1a90 3035463 01b1a90 4e0cddb a4de739 4e0cddb da3acda ab88097 6024481 da3acda ab88097 da3acda 01b1a90 6024481 da3acda 6024481 da3acda ab88097 3035463 ab88097 01b1a90 6024481 3035463 6024481 ab88097 da3acda 6024481 4a365e4 01b1a90 6024481 4a365e4 6024481 4a365e4 4e0cddb b0796be 01b1a90 b0796be 7c4de94 da3acda 01b1a90 4e0cddb 6024481 da3acda 6024481 3035463 da3acda 3035463 da3acda 3035463 45b666a b0796be 3035463 6024481 3035463 01b1a90 45b666a 3035463 da3acda 3035463 6024481 3035463 45b666a 3035463 45b666a 3035463 da3acda 4a365e4 ab88097 6024481 45b666a ab88097 da3acda ab88097 22a278f ab88097 b0796be ab88097 6024481 22a278f 6024481 17afa62 b0796be 17afa62 b0796be 17afa62 7c4de94 ab88097 01b1a90 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f ab88097 22a278f 6024481 ab88097 22a278f ab88097 22a278f ab88097 3035463 da3acda f4c84bc 4a365e4 6024481 4a365e4 f4c84bc b0796be f4c84bc b0796be 01b1a90 f4c84bc b0796be f4c84bc 6024481 01b1a90 6024481 4a365e4 6024481 4a365e4 6024481 4a365e4 f4c84bc 6024481 f4c84bc 4a365e4 01b1a90 6024481 4a365e4 6024481 01b1a90 da3acda 01b1a90 4e0cddb 01b1a90 44519b1 01b1a90 b0796be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
import numpy as np
from tqdm.auto import tqdm # Still useful for model loading progress if desired, but not strictly necessary for this simplified version
import os # Still useful for general purpose, but not explicitly used in this simplified version
# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None
tokenizer_splade_doc = None
model_splade_doc = None
# Load SPLADE v3 model (original)
try:
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
model_splade.eval()
print("SPLADE-cocondenser-distil model loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")
# Load SPLADE v3 Lexical model
try:
splade_lexical_model_name = "naver/splade-v3-lexical"
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
model_splade_lexical.eval()
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Lexical model: {e}")
print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# Load SPLADE v3 Doc model
try:
splade_doc_model_name = "naver/splade-v3-doc"
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
model_splade_doc.eval()
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
except Exception as e:
print(f"Error loading SPLADE-v3-Doc model: {e}")
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
# --- Helper function for lexical mask (now handles batches, but used for single input here) ---
def create_lexical_bow_mask(input_ids_batch, vocab_size, tokenizer):
"""
Creates a batch of lexical BOW masks.
input_ids_batch: torch.Tensor of shape (batch_size, sequence_length)
vocab_size: int, size of the tokenizer vocabulary
tokenizer: the tokenizer object
Returns: torch.Tensor of shape (batch_size, vocab_size)
"""
batch_size = input_ids_batch.shape[0]
bow_masks = torch.zeros(batch_size, vocab_size, device=input_ids_batch.device)
for i in range(batch_size):
input_ids = input_ids_batch[i] # Get input_ids for the current item in the batch
meaningful_token_ids = []
for token_id in input_ids.tolist():
if token_id not in [
tokenizer.pad_token_id,
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.mask_token_id,
tokenizer.unk_token_id
]:
meaningful_token_ids.append(token_id)
if meaningful_token_ids:
# Apply mask to the current row in the batch
bow_masks[i, list(set(meaningful_token_ids))] = 1
return bow_masks
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
# These functions take single text input for the Explorer tab
def get_splade_cocondenser_representation(text):
if tokenizer_splade is None or model_splade is None:
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here as it's a single input
else:
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-cocondenser-distil Representation (Weighting and Expansion):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"
return formatted_output
def get_splade_lexical_representation(text):
if tokenizer_splade_lexical is None or model_splade_lexical is None:
return "SPLADE-v3-Lexical model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_lexical(**inputs)
if hasattr(output, 'logits'):
splade_vector = torch.max(
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
dim=1
)[0].squeeze() # Squeeze is fine here
else:
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."
# Always apply lexical mask for this model's specific behavior
vocab_size = tokenizer_splade_lexical.vocab_size
# Call with unsqueezed input_ids for single sample processing
bow_mask = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
).squeeze() # Squeeze back for single output
splade_vector = splade_vector * bow_mask
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = splade_vector[indices].cpu().tolist()
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_lexical.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)
formatted_output = "SPLADE-v3-Lexical Representation (Weighting):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for term, weight in sorted_representation:
formatted_output += f"- **{term}**: {weight:.4f}\n"
formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"
return formatted_output
def get_splade_doc_representation(text):
if tokenizer_splade_doc is None or model_splade_doc is None:
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."
inputs = tokenizer_splade_doc(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(model_splade_doc.device) for k, v in inputs.items()}
with torch.no_grad():
output = model_splade_doc(**inputs)
if not hasattr(output, "logits"):
return "Model output structure not as expected. 'logits' not found."
vocab_size = tokenizer_splade_doc.vocab_size
# Call with unsqueezed input_ids for single sample processing
binary_splade_vector = create_lexical_bow_mask(
inputs['input_ids'], vocab_size, tokenizer_splade_doc
).squeeze() # Squeeze back for single output
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
if not isinstance(indices, list):
indices = [indices] if indices else []
values = [1.0] * len(indices) # All values are 1 for binary representation
token_weights = dict(zip(indices, values))
meaningful_tokens = {}
for token_id, weight in token_weights.items():
decoded_token = tokenizer_splade_doc.decode([token_id])
if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
meaningful_tokens[decoded_token] = weight
sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[0]) # Sort alphabetically for clarity
formatted_output = "SPLADE-v3-Doc Representation (Binary):\n"
if not sorted_representation:
formatted_output += "No significant terms found for this input.\n"
else:
for i, (term, _) in enumerate(sorted_representation):
if i >= 50: # Limit display for very long lists
formatted_output += f"...and {len(sorted_representation) - 50} more terms.\n"
break
formatted_output += f"- **{term}**\n"
formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
formatted_output += f"Total activated terms: {len(indices)}\n"
formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_doc.vocab_size):.2%}\n"
return formatted_output
# --- Unified Prediction Function for the Explorer Tab ---
def predict_representation_explorer(model_choice, text):
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
return get_splade_cocondenser_representation(text)
elif model_choice == "SPLADE-v3-Lexical (weighting)":
return get_splade_lexical_representation(text)
elif model_choice == "SPLADE-v3-Doc (binary)":
return get_splade_doc_representation(text)
else:
return "Please select a model."
# --- Gradio Interface Setup with Tabs ---
with gr.Blocks(title="SPLADE Demos") as demo:
gr.Markdown("# 🌌 SPLADE Demos: Sparse Representation Explorer") # Updated title
gr.Markdown("Explore different SPLADE models and their sparse representation types.") # Updated description
with gr.Tabs():
with gr.TabItem("Sparse Representation Explorer"):
gr.Markdown("### Explore Raw SPLADE Representations for Any Text")
gr.Interface(
fn=predict_representation_explorer,
inputs=[
gr.Radio(
[
"SPLADE-cocondenser-distil (weighting and expansion)",
"SPLADE-v3-Lexical (weighting)",
"SPLADE-v3-Doc (binary)"
],
label="Choose Representation Model",
value="SPLADE-cocondenser-distil (weighting and expansion)"
),
gr.Textbox(
lines=5,
label="Enter your query or document text here:",
placeholder="e.g., Why is Padua the nicest city in Italy?"
)
],
outputs=gr.Markdown(),
allow_flagging="never",
# live=True # Setting live=True might be slow for complex models on every keystroke
)
demo.launch()
|