File size: 6,584 Bytes
a4de739
da3acda
3035463
a4de739
3035463
da3acda
 
ab88097
 
da3acda
ab88097
da3acda
 
 
 
ab88097
da3acda
ab88097
da3acda
 
ab88097
3035463
ab88097
 
 
 
 
3035463
ab88097
 
da3acda
 
 
a4de739
3035463
da3acda
ab88097
3035463
da3acda
 
3035463
 
da3acda
 
3035463
45b666a
 
 
 
3035463
ab88097
3035463
 
 
 
45b666a
3035463
 
 
 
 
da3acda
3035463
 
 
 
 
ab88097
3035463
 
 
45b666a
3035463
45b666a
3035463
 
da3acda
 
 
 
 
ab88097
 
 
45b666a
ab88097
 
da3acda
 
ab88097
22a278f
ab88097
 
 
 
 
 
 
22a278f
ab88097
 
 
22a278f
ab88097
 
22a278f
ab88097
 
 
22a278f
ab88097
22a278f
ab88097
22a278f
ab88097
 
 
22a278f
ab88097
 
22a278f
ab88097
 
 
3035463
 
 
da3acda
 
 
ab88097
da3acda
ab88097
 
da3acda
 
 
3035463
 
da3acda
 
 
ab88097
da3acda
ab88097
da3acda
 
 
 
 
 
 
 
 
ab88097
da3acda
3035463
 
 
a4de739
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModel
import torch

# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_splade_lexical = None
model_splade_lexical = None

# Load SPLADE v3 model (original)
try:
    tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
    model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
    model_splade.eval() # Set to evaluation mode for inference
    print("SPLADE v3 (cocondenser) model loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE (cocondenser) model: {e}")
    print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")

# Load SPLADE v3 Lexical model
try:
    splade_lexical_model_name = "naver/splade-v3-lexical"
    tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
    model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
    model_splade_lexical.eval() # Set to evaluation mode for inference
    print(f"SPLADE v3 Lexical model '{splade_lexical_model_name}' loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE v3 Lexical model: {e}")
    print(f"Please ensure '{splade_lexical_model_name}' is accessible (check Hugging Face Hub for potential agreements).")


# --- Core Representation Functions ---

def get_splade_representation(text):
    if tokenizer_splade is None or model_splade is None:
        return "SPLADE (cocondenser) model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze()
    else:
        return "Model output structure not as expected for SPLADE (cocondenser). 'logits' not found."

    indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices]

    values = splade_vector[indices].cpu().tolist()
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)

    formatted_output = "SPLADE (cocondenser) Representation (All Non-Zero Terms):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        for term, weight in sorted_representation:
            formatted_output += f"- **{term}**: {weight:.4f}\n"

    formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
    formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"

    return formatted_output


def get_splade_lexical_representation(text):
    if tokenizer_splade_lexical is None or model_splade_lexical is None:
        return "SPLADE v3 Lexical model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade_lexical(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade_lexical.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade_lexical(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze()
    else:
        return "Model output structure not as expected for SPLADE v3 Lexical. 'logits' not found."

    indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices]

    values = splade_vector[indices].cpu().tolist()
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade_lexical.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)

    formatted_output = "SPLADE v3 Lexical Representation (All Non-Zero Terms):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        for term, weight in sorted_representation:
            formatted_output += f"- **{term}**: {weight:.4f}\n"

    formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
    formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade_lexical.vocab_size):.2%}\n"

    return formatted_output


# --- Unified Prediction Function for Gradio ---
def predict_representation(model_choice, text):
    if model_choice == "SPLADE (cocondenser)":
        return get_splade_representation(text)
    elif model_choice == "SPLADE-v3-Lexical":
        return get_splade_lexical_representation(text)
    else:
        return "Please select a model."

# --- Gradio Interface Setup ---
demo = gr.Interface(
    fn=predict_representation,
    inputs=[
        gr.Radio(
            ["SPLADE (cocondenser)", "SPLADE-v3-Lexical"], # Updated options
            label="Choose Representation Model",
            value="SPLADE (cocondenser)" # Default selection
        ),
        gr.Textbox(
            lines=5,
            label="Enter your query or document text here:",
            placeholder="e.g., Why is Padua the nicest city in Italy?"
        )
    ],
    outputs=gr.Markdown(),
    title="🌌 Sparse and Binary Sparse Representation Generator",
    description="Enter any text to see its SPLADE sparse vector or SPLADE-v3-Lexical representation.",
    allow_flagging="never"
)

# Launch the Gradio app
demo.launch()