Spaces:
Sleeping
Sleeping
Commit
·
97c8b2b
1
Parent(s):
01d319b
Changed the interface and added the access tokens
Browse files
app.py
CHANGED
@@ -1,46 +1,46 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer
|
3 |
from peft import AutoPeftModelForCausalLM
|
4 |
import torch
|
5 |
import re
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# Load the model from huggingface.
|
15 |
def load_model():
|
16 |
try:
|
17 |
-
|
18 |
if torch.cuda.is_available():
|
19 |
-
device = torch.device("cuda")
|
20 |
st.success(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
21 |
else:
|
22 |
-
|
23 |
-
st.warning("CUDA is not available. Using CPU.")
|
24 |
|
25 |
-
# Fine-tuned model for generating scripts
|
26 |
model_name = "Sidharthan/gemma2_scripter"
|
27 |
|
28 |
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
model_name,
|
30 |
-
trust_remote_code=True
|
|
|
31 |
)
|
32 |
|
33 |
-
# Load model with appropriate device settings
|
34 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
35 |
model_name,
|
36 |
-
device_map=None,
|
37 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
38 |
trust_remote_code=True,
|
39 |
-
low_cpu_mem_usage=True
|
40 |
-
|
41 |
-
|
42 |
-
# Move model to device
|
43 |
-
model = model.to(device)
|
44 |
|
45 |
return model, tokenizer
|
46 |
|
@@ -48,22 +48,13 @@ def load_model():
|
|
48 |
st.error(f"Error loading model: {str(e)}")
|
49 |
raise e
|
50 |
|
51 |
-
|
52 |
-
class StopWordCriteria(StoppingCriteria):
|
53 |
-
def __init__(self, tokenizer, stop_word):
|
54 |
-
self.stop_word_id = tokenizer.encode(stop_word, add_special_tokens=False)
|
55 |
-
|
56 |
-
def __call__(self, input_ids, scores, **kwargs):
|
57 |
-
# Check if the last token(s) match the stop word
|
58 |
-
if len(input_ids[0]) >= len(self.stop_word_id) and input_ids[0][-len(self.stop_word_id):].tolist() == self.stop_word_id:
|
59 |
-
return True
|
60 |
-
return False
|
61 |
-
|
62 |
-
def generate_text(prompt, model, tokenizer, params, last_user_prompt=""):
|
63 |
-
# Determine the device
|
64 |
device = next(model.parameters()).device
|
65 |
|
66 |
-
#
|
|
|
|
|
|
|
67 |
inputs = tokenizer(prompt, return_tensors='pt')
|
68 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
69 |
|
@@ -85,22 +76,12 @@ def generate_text(prompt, model, tokenizer, params, last_user_prompt=""):
|
|
85 |
stopping_criteria=stopping_criteria
|
86 |
)
|
87 |
|
88 |
-
# Move outputs back to CPU for decoding
|
89 |
-
outputs = outputs.cpu()
|
90 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
91 |
-
print("Response from the model:", response)
|
92 |
|
93 |
-
# Clean up
|
94 |
-
response = re.sub(r'user\s.*?model\s', '', response, flags=re.DOTALL)
|
95 |
response = re.sub(r'keywords\s.*?script\s', '', response, flags=re.DOTALL)
|
96 |
response = re.sub(r'\bscript\b.*$', '', response, flags=re.IGNORECASE).strip()
|
97 |
|
98 |
-
# Remove previous prompt if repeated in response
|
99 |
-
print("Last user prompt:", last_user_prompt)
|
100 |
-
if last_user_prompt and last_user_prompt in response:
|
101 |
-
|
102 |
-
response = response.replace(last_user_prompt, "").strip()
|
103 |
-
|
104 |
return response
|
105 |
|
106 |
except RuntimeError as e:
|
@@ -112,16 +93,16 @@ def generate_text(prompt, model, tokenizer, params, last_user_prompt=""):
|
|
112 |
return f"Error during generation: {str(e)}"
|
113 |
|
114 |
def main():
|
115 |
-
st.title("
|
116 |
|
117 |
# Sidebar for model parameters
|
118 |
-
st.sidebar.title("
|
119 |
params = {
|
120 |
-
'max_length': st.sidebar.
|
121 |
-
'temperature': st.sidebar.
|
122 |
-
'top_p': st.sidebar.
|
123 |
-
'top_k': st.sidebar.
|
124 |
-
'repetition_penalty': st.sidebar.
|
125 |
}
|
126 |
|
127 |
# Load model and tokenizer
|
@@ -131,65 +112,36 @@ def main():
|
|
131 |
|
132 |
model, tokenizer = get_model()
|
133 |
|
134 |
-
#
|
135 |
-
st.markdown("###
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
with st.chat_message(message["role"]):
|
140 |
-
st.markdown(message["content"])
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
"Select Mode",
|
145 |
-
["Conversation", "Script Generation"],
|
146 |
-
key="input_mode"
|
147 |
-
)
|
148 |
|
149 |
-
#
|
150 |
-
if
|
151 |
-
|
152 |
-
st.
|
153 |
-
|
154 |
-
st.
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
else:
|
164 |
-
# Script generation mode
|
165 |
-
full_prompt = f"<bos><start_of_turn>keywords\n{prompt}<end_of_turn>\n<start_of_turn>script\n"
|
166 |
-
|
167 |
-
# Generate response
|
168 |
-
with st.chat_message("assistant"):
|
169 |
-
with st.spinner("Thinking..."):
|
170 |
-
response = generate_text(full_prompt, model, tokenizer, params, last_user_prompt=prompt)
|
171 |
-
st.markdown(response)
|
172 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
173 |
-
|
174 |
-
# Update conversation history for the model (not displayed)
|
175 |
-
if input_mode == "Conversation":
|
176 |
-
if st.session_state.conversation_history:
|
177 |
-
st.session_state.conversation_history = (
|
178 |
-
f"{st.session_state.conversation_history}"
|
179 |
-
f"<bos><start_of_turn>user\n{prompt}<end_of_turn>"
|
180 |
-
f"<start_of_turn>model\n{response}"
|
181 |
-
)
|
182 |
-
else:
|
183 |
-
st.session_state.conversation_history = (
|
184 |
-
f"<bos><start_of_turn>user\n{prompt}<end_of_turn>"
|
185 |
-
f"<start_of_turn>model\n{response}"
|
186 |
-
)
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
st.session_state.messages = []
|
191 |
-
st.session_state.conversation_history = ""
|
192 |
-
st.experimental_rerun()
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, StoppingCriteria, StoppingCriteriaList
|
3 |
from peft import AutoPeftModelForCausalLM
|
4 |
import torch
|
5 |
import re
|
6 |
+
import os
|
7 |
|
8 |
+
os.environ['HF_HOME'] = '/app/cache'
|
9 |
+
hf_token = os.getenv('HF_TOKEN')
|
10 |
+
|
11 |
+
class StopWordCriteria(StoppingCriteria):
|
12 |
+
def __init__(self, tokenizer, stop_word):
|
13 |
+
self.stop_word_id = tokenizer.encode(stop_word, add_special_tokens=False)
|
14 |
+
|
15 |
+
def __call__(self, input_ids, scores, **kwargs):
|
16 |
+
if len(input_ids[0]) >= len(self.stop_word_id) and input_ids[0][-len(self.stop_word_id):].tolist() == self.stop_word_id:
|
17 |
+
return True
|
18 |
+
return False
|
19 |
|
|
|
20 |
def load_model():
|
21 |
try:
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
if torch.cuda.is_available():
|
|
|
24 |
st.success(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
25 |
else:
|
26 |
+
st.warning("Using CPU for inference")
|
|
|
27 |
|
|
|
28 |
model_name = "Sidharthan/gemma2_scripter"
|
29 |
|
30 |
tokenizer = AutoTokenizer.from_pretrained(
|
31 |
model_name,
|
32 |
+
trust_remote_code=True,
|
33 |
+
token=hf_token
|
34 |
)
|
35 |
|
|
|
36 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
37 |
model_name,
|
38 |
+
device_map=None,
|
39 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
40 |
trust_remote_code=True,
|
41 |
+
low_cpu_mem_usage=True,
|
42 |
+
cache_dir='/app/cache'
|
43 |
+
).to(device)
|
|
|
|
|
44 |
|
45 |
return model, tokenizer
|
46 |
|
|
|
48 |
st.error(f"Error loading model: {str(e)}")
|
49 |
raise e
|
50 |
|
51 |
+
def generate_script(tags, model, tokenizer, params):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
device = next(model.parameters()).device
|
53 |
|
54 |
+
# Create prompt with tags
|
55 |
+
prompt = f"<bos><start_of_turn>keywords\n{tags}<end_of_turn>\n<start_of_turn>script\n"
|
56 |
+
|
57 |
+
# Tokenize and move to device
|
58 |
inputs = tokenizer(prompt, return_tensors='pt')
|
59 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
60 |
|
|
|
76 |
stopping_criteria=stopping_criteria
|
77 |
)
|
78 |
|
|
|
|
|
79 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
80 |
|
81 |
+
# Clean up response
|
|
|
82 |
response = re.sub(r'keywords\s.*?script\s', '', response, flags=re.DOTALL)
|
83 |
response = re.sub(r'\bscript\b.*$', '', response, flags=re.IGNORECASE).strip()
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
return response
|
86 |
|
87 |
except RuntimeError as e:
|
|
|
93 |
return f"Error during generation: {str(e)}"
|
94 |
|
95 |
def main():
|
96 |
+
st.title("🎥 YouTube Script Generator")
|
97 |
|
98 |
# Sidebar for model parameters
|
99 |
+
st.sidebar.title("Generation Parameters")
|
100 |
params = {
|
101 |
+
'max_length': st.sidebar.slider('Max Length', 64, 1024, 512),
|
102 |
+
'temperature': st.sidebar.slider('Temperature', 0.1, 1.0, 0.7),
|
103 |
+
'top_p': st.sidebar.slider('Top P', 0.1, 1.0, 0.95),
|
104 |
+
'top_k': st.sidebar.slider('Top K', 1, 100, 50),
|
105 |
+
'repetition_penalty': st.sidebar.slider('Repetition Penalty', 1.0, 2.0, 1.2)
|
106 |
}
|
107 |
|
108 |
# Load model and tokenizer
|
|
|
112 |
|
113 |
model, tokenizer = get_model()
|
114 |
|
115 |
+
# Tag input section
|
116 |
+
st.markdown("### Add Tags")
|
117 |
+
st.markdown("Enter tags separated by commas to generate a YouTube script")
|
118 |
+
|
119 |
+
# Create columns for tag input and generate button
|
120 |
+
col1, col2 = st.columns([3, 1])
|
121 |
|
122 |
+
with col1:
|
123 |
+
tags = st.text_input("Enter tags", placeholder="tech, AI, future, innovations...")
|
|
|
|
|
124 |
|
125 |
+
with col2:
|
126 |
+
generate_button = st.button("Generate Script", type="primary")
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
# Generated script section
|
129 |
+
if generate_button and tags:
|
130 |
+
st.markdown("### Generated Script")
|
131 |
+
with st.spinner("Generating script..."):
|
132 |
+
script = generate_script(tags, model, tokenizer, params)
|
133 |
+
st.text_area("Your script:", value=script, height=400)
|
134 |
|
135 |
+
# Add download button
|
136 |
+
st.download_button(
|
137 |
+
label="Download Script",
|
138 |
+
data=script,
|
139 |
+
file_name="youtube_script.txt",
|
140 |
+
mime="text/plain"
|
141 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
elif generate_button and not tags:
|
144 |
+
st.warning("Please enter some tags first!")
|
|
|
|
|
|
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
+
main()
|