Spaces:
Sleeping
Sleeping
Sidharthan
commited on
Commit
·
bfb6e0a
1
Parent(s):
62eb74f
Added application file
Browse files
app.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from peft import AutoPeftModelForCausalLM
|
4 |
+
import torch
|
5 |
+
import re
|
6 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
7 |
+
|
8 |
+
# Initialize session state variables if they don't exist
|
9 |
+
if 'messages' not in st.session_state:
|
10 |
+
st.session_state.messages = []
|
11 |
+
if 'conversation_history' not in st.session_state:
|
12 |
+
st.session_state.conversation_history = ""
|
13 |
+
|
14 |
+
# Load the model from huggingface.
|
15 |
+
def load_model():
|
16 |
+
try:
|
17 |
+
# Check CUDA availability
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
device = torch.device("cuda")
|
20 |
+
st.success(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
21 |
+
else:
|
22 |
+
device = torch.device("cpu")
|
23 |
+
st.warning("CUDA is not available. Using CPU.")
|
24 |
+
|
25 |
+
# Fine-tuned model for generating scripts
|
26 |
+
model_name = "Sidharthan/gemma2_scripter"
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
model_name,
|
30 |
+
trust_remote_code=True
|
31 |
+
)
|
32 |
+
|
33 |
+
# Load model with appropriate device settings
|
34 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
35 |
+
model_name,
|
36 |
+
device_map=None, # We'll handle device placement manually
|
37 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
38 |
+
trust_remote_code=True,
|
39 |
+
low_cpu_mem_usage=True
|
40 |
+
)
|
41 |
+
|
42 |
+
# Move model to device
|
43 |
+
model = model.to(device)
|
44 |
+
|
45 |
+
return model, tokenizer
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Error loading model: {str(e)}")
|
49 |
+
raise e
|
50 |
+
|
51 |
+
|
52 |
+
class StopWordCriteria(StoppingCriteria):
|
53 |
+
def __init__(self, tokenizer, stop_word):
|
54 |
+
self.stop_word_id = tokenizer.encode(stop_word, add_special_tokens=False)
|
55 |
+
|
56 |
+
def __call__(self, input_ids, scores, **kwargs):
|
57 |
+
# Check if the last token(s) match the stop word
|
58 |
+
if len(input_ids[0]) >= len(self.stop_word_id) and input_ids[0][-len(self.stop_word_id):].tolist() == self.stop_word_id:
|
59 |
+
return True
|
60 |
+
return False
|
61 |
+
|
62 |
+
def generate_text(prompt, model, tokenizer, params, last_user_prompt=""):
|
63 |
+
# Determine the device
|
64 |
+
device = next(model.parameters()).device
|
65 |
+
|
66 |
+
# Tokenize and move to the correct device
|
67 |
+
inputs = tokenizer(prompt, return_tensors='pt')
|
68 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
69 |
+
|
70 |
+
stop_word = 'script'
|
71 |
+
stopping_criteria = StoppingCriteriaList([StopWordCriteria(tokenizer, stop_word)])
|
72 |
+
|
73 |
+
try:
|
74 |
+
outputs = model.generate(
|
75 |
+
**inputs,
|
76 |
+
max_length=params['max_length'],
|
77 |
+
do_sample=True,
|
78 |
+
temperature=params['temperature'],
|
79 |
+
top_p=params['top_p'],
|
80 |
+
top_k=params['top_k'],
|
81 |
+
repetition_penalty=params['repetition_penalty'],
|
82 |
+
num_return_sequences=1,
|
83 |
+
pad_token_id=tokenizer.pad_token_id,
|
84 |
+
eos_token_id=tokenizer.eos_token_id,
|
85 |
+
stopping_criteria=stopping_criteria
|
86 |
+
)
|
87 |
+
|
88 |
+
# Move outputs back to CPU for decoding
|
89 |
+
outputs = outputs.cpu()
|
90 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
91 |
+
print("Response from the model:", response)
|
92 |
+
|
93 |
+
# Clean up unwanted patterns
|
94 |
+
response = re.sub(r'user\s.*?model\s', '', response, flags=re.DOTALL)
|
95 |
+
response = re.sub(r'keywords\s.*?script\s', '', response, flags=re.DOTALL)
|
96 |
+
response = re.sub(r'\bscript\b.*$', '', response, flags=re.IGNORECASE).strip()
|
97 |
+
|
98 |
+
# Remove previous prompt if repeated in response
|
99 |
+
print("Last user prompt:", last_user_prompt)
|
100 |
+
if last_user_prompt and last_user_prompt in response:
|
101 |
+
|
102 |
+
response = response.replace(last_user_prompt, "").strip()
|
103 |
+
|
104 |
+
return response
|
105 |
+
|
106 |
+
except RuntimeError as e:
|
107 |
+
if "out of memory" in str(e):
|
108 |
+
st.error("GPU out of memory error. Try reducing max_length or using CPU.")
|
109 |
+
return "Error: GPU out of memory"
|
110 |
+
else:
|
111 |
+
st.error(f"Error during generation: {str(e)}")
|
112 |
+
return f"Error during generation: {str(e)}"
|
113 |
+
|
114 |
+
def main():
|
115 |
+
st.title("🤖 LLM Chat Interface")
|
116 |
+
|
117 |
+
# Sidebar for model parameters
|
118 |
+
st.sidebar.title("Model Parameters")
|
119 |
+
params = {
|
120 |
+
'max_length': st.sidebar.selectbox('Max Length', options=[64, 128, 256, 512, 1024], index=3),
|
121 |
+
'temperature': st.sidebar.selectbox('Temperature', options=[0.2, 0.5, 0.7, 0.9, 1.0], index=2),
|
122 |
+
'top_p': st.sidebar.selectbox('Top P', options=[0.7, 0.8, 0.9, 0.95, 1.0], index=3),
|
123 |
+
'top_k': st.sidebar.selectbox('Top K', options=[10, 20, 50, 100], index=2),
|
124 |
+
'repetition_penalty': st.sidebar.selectbox('Repetition Penalty', options=[1.0, 1.1, 1.2, 1.3, 1.5], index=2)
|
125 |
+
}
|
126 |
+
|
127 |
+
# Load model and tokenizer
|
128 |
+
@st.cache_resource
|
129 |
+
def get_model():
|
130 |
+
return load_model()
|
131 |
+
|
132 |
+
model, tokenizer = get_model()
|
133 |
+
|
134 |
+
# Chat interface
|
135 |
+
st.markdown("### Chat Interface")
|
136 |
+
|
137 |
+
# Display the full conversation history
|
138 |
+
for message in st.session_state.messages:
|
139 |
+
with st.chat_message(message["role"]):
|
140 |
+
st.markdown(message["content"])
|
141 |
+
|
142 |
+
# Input area
|
143 |
+
input_mode = st.selectbox(
|
144 |
+
"Select Mode",
|
145 |
+
["Conversation", "Script Generation"],
|
146 |
+
key="input_mode"
|
147 |
+
)
|
148 |
+
|
149 |
+
# Chat input
|
150 |
+
if prompt := st.chat_input("Enter your message"):
|
151 |
+
# Add user message to chat history
|
152 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
153 |
+
with st.chat_message("user"):
|
154 |
+
st.markdown(prompt)
|
155 |
+
|
156 |
+
# Prepare prompt based on selected mode
|
157 |
+
if input_mode == "Conversation":
|
158 |
+
# Add new user input to conversation history
|
159 |
+
if st.session_state.conversation_history:
|
160 |
+
full_prompt = f"{st.session_state.conversation_history}\n<bos><start_of_turn>user\n{prompt}<end_of_turn>\n<start_of_turn>model\n"
|
161 |
+
else:
|
162 |
+
full_prompt = f"<bos><start_of_turn>user\n{prompt}<end_of_turn>\n<start_of_turn>model\n"
|
163 |
+
else:
|
164 |
+
# Script generation mode
|
165 |
+
full_prompt = f"<bos><start_of_turn>keywords\n{prompt}<end_of_turn>\n<start_of_turn>script\n"
|
166 |
+
|
167 |
+
# Generate response
|
168 |
+
with st.chat_message("assistant"):
|
169 |
+
with st.spinner("Thinking..."):
|
170 |
+
response = generate_text(full_prompt, model, tokenizer, params, last_user_prompt=prompt)
|
171 |
+
st.markdown(response)
|
172 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
173 |
+
|
174 |
+
# Update conversation history for the model (not displayed)
|
175 |
+
if input_mode == "Conversation":
|
176 |
+
if st.session_state.conversation_history:
|
177 |
+
st.session_state.conversation_history = (
|
178 |
+
f"{st.session_state.conversation_history}"
|
179 |
+
f"<bos><start_of_turn>user\n{prompt}<end_of_turn>"
|
180 |
+
f"<start_of_turn>model\n{response}"
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
st.session_state.conversation_history = (
|
184 |
+
f"<bos><start_of_turn>user\n{prompt}<end_of_turn>"
|
185 |
+
f"<start_of_turn>model\n{response}"
|
186 |
+
)
|
187 |
+
|
188 |
+
# Clear chat button
|
189 |
+
if st.button("Clear Chat"):
|
190 |
+
st.session_state.messages = []
|
191 |
+
st.session_state.conversation_history = ""
|
192 |
+
st.experimental_rerun()
|
193 |
+
|
194 |
+
if __name__ == "__main__":
|
195 |
+
main()
|