Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,37 +7,53 @@ from tensorflow.keras.utils import load_img,img_to_array
|
|
7 |
from tensorflow.keras.preprocessing import image
|
8 |
from PIL import Image,ImageOps
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
st.title(":red[APPLICATION DE PREDICTION DU COVID] :bar_chart: :chart:")
|
13 |
-
st.markdown("* NOM: FOSSO TCHATAT SIDOINE ",unsafe_allow_html=True)
|
14 |
|
15 |
-
|
16 |
-
st.image("keyce.jpg")
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
with tab1:
|
26 |
-
st.image("loss.png")
|
27 |
-
with tab2:
|
28 |
-
generate_pred = st.button("Predict")
|
29 |
-
if upload_file:
|
30 |
-
st.image(upload_file,caption="Image téléchargée",use_column_width=True)
|
31 |
-
test_image = image.load_img(upload_file,target_size=(299,299))
|
32 |
-
image_array = img_to_array(test_image)
|
33 |
-
image_array = np.expand_dims(image_array,axis=0)
|
34 |
-
|
35 |
-
if generate_pred:
|
36 |
-
predictions = model.predict(image_array)
|
37 |
-
classes = np.argmax(predictions[0])
|
38 |
-
for key,value in covid_classes.items():
|
39 |
-
if value == classes:
|
40 |
-
st.write("The diagostic is :",key)
|
41 |
-
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
7 |
from tensorflow.keras.preprocessing import image
|
8 |
from PIL import Image,ImageOps
|
9 |
|
10 |
+
st.sidebar.image("image/keyce.jpg")
|
11 |
|
12 |
+
menu_options = ["Documentation", "Application"]
|
|
|
|
|
13 |
|
14 |
+
selection = st.sidebar.selectbox("Sélectionnez une page", menu_options)
|
|
|
15 |
|
16 |
+
if selection == "Docummentation":
|
17 |
+
st.title("Bienvenue sur la documentation")
|
18 |
+
st.write("L'application de surveillance médicale pour COVID, Pneumonie et Tuberculose est un outil interactif conçu pour aider les professionnels de la santé à suivre et analyser les cas de ces maladies respiratoires. L'application fournit des fonctionnalités permettant de visualiser les données, d'effectuer des analyses approfondies et de prendre des décisions éclairées.")
|
19 |
|
20 |
+
elif selection == "Application":
|
21 |
+
def main():
|
22 |
+
|
23 |
+
st.title(":red[APPLICATION DE PREDICTION DU COVID] :bar_chart: :chart:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
st.markdown("* NOM: FOSSO TCHATAT SIDOINE ",unsafe_allow_html=True)
|
26 |
+
|
27 |
+
model = tf.keras.models.load_model("model.h5")
|
28 |
+
covid_classes = {'COVID19': 0, 'NORMAL': 1, 'PNEUMONIA': 2, 'TURBERCULOSIS': 3}
|
29 |
+
tab1, tab2,tab3= st.tabs(["Uploader le fichier",":bar_chart: Evaluation du model", ":mask: :smile: Prediction"])
|
30 |
+
|
31 |
+
with tab1:
|
32 |
+
upload_file = st.file_uploader("Telecharger un fichier",type = ['JPEG','jpg','png','PNG'])
|
33 |
+
with tab2:
|
34 |
+
st.image("image/loss.png")
|
35 |
+
with tab3:
|
36 |
+
|
37 |
+
if upload_file:
|
38 |
+
st.image(upload_file,caption="Image téléchargée",use_column_width=True)
|
39 |
+
test_image = image.load_img(upload_file,target_size=(299,299))
|
40 |
+
image_array = img_to_array(test_image)
|
41 |
+
image_array = np.expand_dims(image_array,axis=0)
|
42 |
+
|
43 |
+
#Boutton pour effectuer la prédiction
|
44 |
+
btn_prediction = st.button("Effectuer le diagnostic")
|
45 |
+
|
46 |
+
if btn_prediction:
|
47 |
+
predictions = model.predict(image_array)
|
48 |
+
classes = np.argmax(predictions[0])
|
49 |
+
|
50 |
+
for cle, valeur in covid_classes.items():
|
51 |
+
if valeur == classes:
|
52 |
+
st.write("The diagostic is :",cle)
|
53 |
+
|
54 |
+
#Donner un titre
|
55 |
+
|
56 |
+
if __name__ == '__main__':
|
57 |
+
main()
|
58 |
+
|
59 |
|