Sidoine commited on
Commit
d6fea49
·
1 Parent(s): 0f0cfff

Create app

Browse files
Files changed (1) hide show
  1. app +43 -0
app ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #Importer les librairies
2
+ import streamlit as st
3
+ import tensorflow as tf
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ from tensorflow.keras.utils import load_img,img_to_array
7
+ from tensorflow.keras.preprocessing import image
8
+ from PIL import Image,ImageOps
9
+
10
+
11
+ #Donner un titre
12
+ st.title(":red[APPLICATION DE PREDICTION DU COVID] :bar_chart: :chart:")
13
+ st.markdown("* NOM: FOSSO TCHATAT SIDOINE ",unsafe_allow_html=True)
14
+
15
+ #loader l'image
16
+ st.image("image/keyce.jpg")
17
+
18
+ upload_file = st.file_uploader("Telecharger un fichier",type = ['JPEG','jpg','png','PNG'])
19
+
20
+
21
+ model = tf.keras.models.load_model("model.h5")
22
+ covid_classes = {'COVID19': 0, 'NORMAL': 1, 'PNEUMONIA': 2, 'TURBERCULOSIS': 3}
23
+ tab1, tab2= st.tabs([":bar_chart: Evaluation du model", ":mask: :smile: Prediction"])
24
+
25
+ with tab1:
26
+ st.image("image/loss.png")
27
+ with tab2:
28
+ generate_pred = st.button("Predict")
29
+ if upload_file:
30
+ st.image(upload_file,caption="Image téléchargée",use_column_width=True)
31
+ test_image = image.load_img(upload_file,target_size=(299,299))
32
+ image_array = img_to_array(test_image)
33
+ image_array = np.expand_dims(image_array,axis=0)
34
+
35
+ if generate_pred:
36
+ predictions = model.predict(image_array)
37
+ classes = np.argmax(predictions[0])
38
+ for key,value in covid_classes.items():
39
+ if value == classes:
40
+ st.write("The diagostic is :",key)
41
+
42
+
43
+