Spaces:
Sleeping
Sleeping
Create app
Browse files
app
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Importer les librairies
|
2 |
+
import streamlit as st
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from tensorflow.keras.utils import load_img,img_to_array
|
7 |
+
from tensorflow.keras.preprocessing import image
|
8 |
+
from PIL import Image,ImageOps
|
9 |
+
|
10 |
+
|
11 |
+
#Donner un titre
|
12 |
+
st.title(":red[APPLICATION DE PREDICTION DU COVID] :bar_chart: :chart:")
|
13 |
+
st.markdown("* NOM: FOSSO TCHATAT SIDOINE ",unsafe_allow_html=True)
|
14 |
+
|
15 |
+
#loader l'image
|
16 |
+
st.image("image/keyce.jpg")
|
17 |
+
|
18 |
+
upload_file = st.file_uploader("Telecharger un fichier",type = ['JPEG','jpg','png','PNG'])
|
19 |
+
|
20 |
+
|
21 |
+
model = tf.keras.models.load_model("model.h5")
|
22 |
+
covid_classes = {'COVID19': 0, 'NORMAL': 1, 'PNEUMONIA': 2, 'TURBERCULOSIS': 3}
|
23 |
+
tab1, tab2= st.tabs([":bar_chart: Evaluation du model", ":mask: :smile: Prediction"])
|
24 |
+
|
25 |
+
with tab1:
|
26 |
+
st.image("image/loss.png")
|
27 |
+
with tab2:
|
28 |
+
generate_pred = st.button("Predict")
|
29 |
+
if upload_file:
|
30 |
+
st.image(upload_file,caption="Image téléchargée",use_column_width=True)
|
31 |
+
test_image = image.load_img(upload_file,target_size=(299,299))
|
32 |
+
image_array = img_to_array(test_image)
|
33 |
+
image_array = np.expand_dims(image_array,axis=0)
|
34 |
+
|
35 |
+
if generate_pred:
|
36 |
+
predictions = model.predict(image_array)
|
37 |
+
classes = np.argmax(predictions[0])
|
38 |
+
for key,value in covid_classes.items():
|
39 |
+
if value == classes:
|
40 |
+
st.write("The diagostic is :",key)
|
41 |
+
|
42 |
+
|
43 |
+
|