#Importer les librairies import streamlit as st import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.utils import load_img,img_to_array from tensorflow.keras.preprocessing import image from PIL import Image,ImageOps #Donner un titre st.title(":red[APPLICATION DE PREDICTION DU COVID] :bar_chart: :chart:") st.markdown("* NOM: FOSSO TCHATAT SIDOINE ",unsafe_allow_html=True) #loader l'image st.image("image/keyce.jpg") upload_file = st.file_uploader("Telecharger un fichier",type = ['JPEG','jpg','png','PNG']) model = tf.keras.models.load_model("model.h5") covid_classes = {'COVID19': 0, 'NORMAL': 1, 'PNEUMONIA': 2, 'TURBERCULOSIS': 3} tab1, tab2= st.tabs([":bar_chart: Evaluation du model", ":mask: :smile: Prediction"]) with tab1: st.image("image/loss.png") with tab2: generate_pred = st.button("Predict") if upload_file: st.image(upload_file,caption="Image téléchargée",use_column_width=True) test_image = image.load_img(upload_file,target_size=(299,299)) image_array = img_to_array(test_image) image_array = np.expand_dims(image_array,axis=0) if generate_pred: predictions = model.predict(image_array) classes = np.argmax(predictions[0]) for key,value in covid_classes.items(): if value == classes: st.write("The diagostic is :",key)