File size: 11,648 Bytes
9065f39 4d8256e 9065f39 4d8256e 9065f39 9607e93 9065f39 5813d56 9065f39 5813d56 23cebfc 9065f39 36d6903 9065f39 d6aa14e 2ce4922 36d6903 a4cfc97 55fb831 f3abe06 2ce4922 4020791 69dafc8 9607e93 2ce4922 d6aa14e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import Transformer
import math
# helper Module that adds positional encoding to the token embedding to introduce a notion of word order.
class PositionalEncoding(nn.Module):
def __init__(self,
emb_size: int,
dropout: float,
maxlen: int = 5000):
super(PositionalEncoding, self).__init__()
den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size)
pos = torch.arange(0, maxlen).reshape(maxlen, 1)
pos_embedding = torch.zeros((maxlen, emb_size))
pos_embedding[:, 0::2] = torch.sin(pos * den)
pos_embedding[:, 1::2] = torch.cos(pos * den)
pos_embedding = pos_embedding.unsqueeze(-2)
self.dropout = nn.Dropout(dropout)
self.register_buffer('pos_embedding', pos_embedding)
def forward(self, token_embedding: Tensor):
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])
# helper Module to convert tensor of input indices into corresponding tensor of token embeddings
class TokenEmbedding(nn.Module):
def __init__(self, vocab_size: int, emb_size):
super(TokenEmbedding, self).__init__()
self.embedding = nn.Embedding(vocab_size, emb_size)
self.emb_size = emb_size
def forward(self, tokens: Tensor):
return self.embedding(tokens.long()) * math.sqrt(self.emb_size)
class Seq2SeqTransformer(nn.Module):
def __init__(self,
num_encoder_layers: int,
num_decoder_layers: int,
emb_size: int,
nhead: int,
src_vocab_size: int,
tgt_vocab_size: int,
dim_feedforward: int = 512,
dropout: float = 0.1):
super(Seq2SeqTransformer, self).__init__()
self.transformer = Transformer(d_model=emb_size,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_feedforward,
dropout=dropout,
batch_first=True)
self.generator = nn.Linear(emb_size, tgt_vocab_size)
self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
self.positional_encoding = PositionalEncoding(
emb_size, dropout=dropout)
def forward(self,
src: Tensor,
trg: Tensor,
src_mask: Tensor,
tgt_mask: Tensor,
src_padding_mask: Tensor,
tgt_padding_mask: Tensor,
memory_key_padding_mask: Tensor):
src_emb = self.positional_encoding(self.src_tok_emb(src))
tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None,
src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
return self.generator(outs)
def encode(self, src: Tensor, src_mask: Tensor):
return self.transformer.encoder(self.positional_encoding(
self.src_tok_emb(src)), src_mask)
def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
return self.transformer.decoder(self.positional_encoding(
self.tgt_tok_emb(tgt)), memory,
tgt_mask)
import yaml
from transformers import AutoTokenizer
from transformers import PreTrainedTokenizerFast
from tokenizers.processors import TemplateProcessing
def addPreprocessing(tokenizer):
tokenizer._tokenizer.post_processor = TemplateProcessing(
single=tokenizer.bos_token + " $A " + tokenizer.eos_token,
special_tokens=[(tokenizer.eos_token, tokenizer.eos_token_id), (tokenizer.bos_token, tokenizer.bos_token_id)])
def load_model(model_checkpoint_dir='model.pt',config_dir='config.yaml'):
with open(config_dir, 'r') as yaml_file:
loaded_model_params = yaml.safe_load(yaml_file)
# Create a new instance of the model with the loaded configuration
model = Seq2SeqTransformer(
loaded_model_params["num_encoder_layers"],
loaded_model_params["num_decoder_layers"],
loaded_model_params["emb_size"],
loaded_model_params["nhead"],
loaded_model_params["source_vocab_size"],
loaded_model_params["target_vocab_size"],
loaded_model_params["ffn_hid_dim"]
)
checkpoint = torch.load(model_checkpoint_dir) if torch.cuda.is_available() else torch.load(model_checkpoint_dir,map_location=torch.device('cpu'))
model.load_state_dict(checkpoint)
return model
def greedy_decode(model, src, src_mask, max_len, start_symbol):
# Move inputs to the device
src = src.to(device)
src_mask = src_mask.to(device)
# Encode the source sequence
memory = model.encode(src, src_mask)
# Initialize the target sequence with the start symbol
ys = torch.tensor([[start_symbol]]).type(torch.long).to(device)
for i in range(max_len - 1):
memory = memory.to(device)
# Create a target mask for autoregressive decoding
tgt_mask = torch.tril(torch.full((ys.size(1), ys.size(1)), float('-inf'), device=device), diagonal=-1).transpose(0, 1).to(device)
# Decode the target sequence
out = model.decode(ys, memory, tgt_mask)
# Generate the probability distribution over the vocabulary
prob = model.generator(out[:, -1])
# Select the next word with the highest probability
_, next_word = torch.max(prob, dim=1)
next_word = next_word.item()
# Append the next word to the target sequence
ys = torch.cat([ys,
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
# Check if the generated word is the end-of-sequence token
if next_word == target_tokenizer.eos_token_id:
break
return ys
def beam_search_decode(model, src, src_mask, max_len, start_symbol, beam_size ,length_penalty):
# Move inputs to the device
src = src.to(device)
src_mask = src_mask.to(device)
# Encode the source sequence
memory = model.encode(src, src_mask) # b * seqlen_src * hdim
# Initialize the beams (sequences, score)
beams = [(torch.tensor([[start_symbol]]).type(torch.long).to(device), 0)]
for i in range(max_len - 1):
new_beams = []
complete_beams = []
cbl = []
for ys, score in beams:
# Create a target mask for autoregressive decoding
tgt_mask = torch.tril(torch.full((ys.size(1), ys.size(1)), float('-inf'), device=device), diagonal=-1).transpose(0, 1).to(device)
# Decode the target sequence
out = model.decode(ys, memory, tgt_mask) # b * seqlen_tgt * hdim
#print(f'shape out {out.shape}')
# Generate the probability distribution over the vocabulary
prob = model.generator(out[:, -1]) # b * tgt_vocab_size
#print(f'shape prob {prob.shape}')
# Get the top beam_size candidates for the next word
_, top_indices = torch.topk(prob, beam_size, dim=1) # b * beam_size
for j,next_word in enumerate(top_indices[0]):
next_word = next_word.item()
# Append the next word to the target sequence
new_ys = torch.cat([ys, torch.full((1, 1), fill_value=next_word, dtype=src.dtype).to(device)], dim=1)
length_factor = (5 + j / 6) ** length_penalty
new_score = (score + prob[0][next_word].item()) / length_factor
if next_word == target_tokenizer.eos_token_id:
complete_beams.append((new_ys, new_score))
else:
new_beams.append((new_ys, new_score))
# Sort the beams by score and select the top beam_size beams
new_beams.sort(key=lambda x: x[1], reverse=True)
try:
beams = new_beams[:beam_size]
except:
beams = new_beams
beams = new_beams + complete_beams
beams.sort(key=lambda x: x[1], reverse=True)
best_beam = beams[0][0]
return best_beam
def translate(src_sentence: str, strategy:str = 'greedy' , lenght_extend :int = 5, beam_size: int = 5, length_penalty:float = 0.6):
assert strategy in ['greedy','beam search'], 'the strategy for decoding has to be either greedy or beam search'
assert lenght_extend >= 1, 'lenght_extend must be superior or equal to one'
# Tokenize the source sentence
src = source_tokenizer(src_sentence, **token_config)['input_ids']
num_tokens = src.shape[1]
# Create a source mask
src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
if strategy == 'greedy':
tgt_tokens = greedy_decode(model, src, src_mask, max_len=num_tokens + lenght_extend, start_symbol=target_tokenizer.bos_token_id).flatten()
# Generate the target tokens using beam search decoding
else:
assert length_penalty >= 0 , 'lenght penelity must be superior or equal to zero'
assert beam_size >= 1, 'beam size must superior or equal to one'
tgt_tokens = beam_search_decode(model, src, src_mask, max_len=num_tokens + lenght_extend, start_symbol=target_tokenizer.bos_token_id, beam_size=beam_size,length_penalty=length_penalty).flatten()
# Decode the target tokens and clean up the result
return target_tokenizer.decode(tgt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True)
special_tokens = {'unk_token':"[UNK]",
'cls_token':"[CLS]",
'eos_token': '[EOS]',
'sep_token':"[SEP]",
'pad_token':"[PAD]",
'mask_token':"[MASK]",
'bos_token':"[BOS]"}
source_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", **special_tokens)
target_tokenizer = PreTrainedTokenizerFast.from_pretrained('Sifal/E2KT')
addPreprocessing(source_tokenizer)
addPreprocessing(target_tokenizer)
token_config = {
"add_special_tokens": True,
"return_tensors": 'pt',
}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model()
model.to(device)
model.eval()
import gradio as gr
iface = gr.Interface(
fn=translate,
inputs=[
gr.Textbox(label="Input sentence"),
gr.Radio(['greedy', 'beam search'], label="Decoding Strategy"),
gr.Number(value=5,label="Max tokens",precision=0),
gr.Number(value=5,label="Beam Size (for beam search)",precision=0),
gr.Number(value=0.6,label="Length Penalty (for beam search)")
],
outputs=gr.Textbox(label="Translation"),
examples=[
['Is it true that you were sick?', "greedy", 5,5,0.6],
['This will probably not translate great, as it contains words not commonly used and is somewhat lenghty.', "greedy", 5,5,0.6],
['Do not be afraid to look into the future.', "greedy", 5,5,0.6],
['The book is on the table.', 'beam search', 6,6,0.7]],
cache_examples=True,
title="Translation Interface for English to Kabyle",
description="Translate text using a pre-trained model.",
)
# Launch the Gradio interface
iface.launch() |