Delete utlis.py
Browse files
utlis.py
DELETED
@@ -1,168 +0,0 @@
|
|
1 |
-
import yaml
|
2 |
-
import torch
|
3 |
-
from .model import Seq2SeqTransformer
|
4 |
-
from transformers import AutoTokenizer
|
5 |
-
from transformers import PreTrainedTokenizerFast
|
6 |
-
from tokenizers.processors import TemplateProcessing
|
7 |
-
|
8 |
-
|
9 |
-
def addPreprocessing(tokenizer):
|
10 |
-
tokenizer._tokenizer.post_processor = TemplateProcessing(
|
11 |
-
single=tokenizer.bos_token + " $A " + tokenizer.eos_token,
|
12 |
-
special_tokens=[(tokenizer.eos_token, tokenizer.eos_token_id), (tokenizer.bos_token, tokenizer.bos_token_id)])
|
13 |
-
|
14 |
-
def load_model(model_checkpoint_dir='model.pt',config_dir='config.yaml'):
|
15 |
-
|
16 |
-
with open(config_dir, 'r') as yaml_file:
|
17 |
-
loaded_model_params = yaml.safe_load(yaml_file)
|
18 |
-
|
19 |
-
# Create a new instance of the model with the loaded configuration
|
20 |
-
model = Seq2SeqTransformer(
|
21 |
-
loaded_model_params["num_encoder_layers"],
|
22 |
-
loaded_model_params["num_decoder_layers"],
|
23 |
-
loaded_model_params["emb_size"],
|
24 |
-
loaded_model_params["nhead"],
|
25 |
-
loaded_model_params["source_vocab_size"],
|
26 |
-
loaded_model_params["target_vocab_size"],
|
27 |
-
loaded_model_params["ffn_hid_dim"]
|
28 |
-
)
|
29 |
-
|
30 |
-
checkpoint = torch.load(model_checkpoint_dir) if torch.cuda.is_available() else torch.load(model_checkpoint_dir,map_location=torch.device('cpu'))
|
31 |
-
model.load_state_dict(checkpoint)
|
32 |
-
|
33 |
-
return model
|
34 |
-
|
35 |
-
|
36 |
-
def greedy_decode(model, src, src_mask, max_len, start_symbol):
|
37 |
-
# Move inputs to the device
|
38 |
-
src = src.to(device)
|
39 |
-
src_mask = src_mask.to(device)
|
40 |
-
|
41 |
-
# Encode the source sequence
|
42 |
-
memory = model.encode(src, src_mask)
|
43 |
-
|
44 |
-
# Initialize the target sequence with the start symbol
|
45 |
-
ys = torch.tensor([[start_symbol]]).type(torch.long).to(device)
|
46 |
-
|
47 |
-
for i in range(max_len - 1):
|
48 |
-
memory = memory.to(device)
|
49 |
-
# Create a target mask for autoregressive decoding
|
50 |
-
tgt_mask = torch.tril(torch.full((ys.size(1), ys.size(1)), float('-inf'), device=device), diagonal=-1).transpose(0, 1).to(device)
|
51 |
-
# Decode the target sequence
|
52 |
-
out = model.decode(ys, memory, tgt_mask)
|
53 |
-
# Generate the probability distribution over the vocabulary
|
54 |
-
prob = model.generator(out[:, -1])
|
55 |
-
|
56 |
-
# Select the next word with the highest probability
|
57 |
-
_, next_word = torch.max(prob, dim=1)
|
58 |
-
next_word = next_word.item()
|
59 |
-
|
60 |
-
# Append the next word to the target sequence
|
61 |
-
ys = torch.cat([ys,
|
62 |
-
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
|
63 |
-
|
64 |
-
# Check if the generated word is the end-of-sequence token
|
65 |
-
if next_word == target_tokenizer.eos_token_id:
|
66 |
-
break
|
67 |
-
|
68 |
-
return ys
|
69 |
-
|
70 |
-
|
71 |
-
def beam_search_decode(model, src, src_mask, max_len, start_symbol, beam_size ,length_penalty):
|
72 |
-
# Move inputs to the device
|
73 |
-
src = src.to(device)
|
74 |
-
src_mask = src_mask.to(device)
|
75 |
-
|
76 |
-
# Encode the source sequence
|
77 |
-
memory = model.encode(src, src_mask) # b * seqlen_src * hdim
|
78 |
-
|
79 |
-
# Initialize the beams (sequences, score)
|
80 |
-
beams = [(torch.tensor([[start_symbol]]).type(torch.long).to(device), 0)]
|
81 |
-
|
82 |
-
for i in range(max_len - 1):
|
83 |
-
new_beams = []
|
84 |
-
complete_beams = []
|
85 |
-
cbl = []
|
86 |
-
|
87 |
-
for ys, score in beams:
|
88 |
-
|
89 |
-
# Create a target mask for autoregressive decoding
|
90 |
-
tgt_mask = torch.tril(torch.full((ys.size(1), ys.size(1)), float('-inf'), device=device), diagonal=-1).transpose(0, 1).to(device)
|
91 |
-
# Decode the target sequence
|
92 |
-
out = model.decode(ys, memory, tgt_mask) # b * seqlen_tgt * hdim
|
93 |
-
#print(f'shape out {out.shape}')
|
94 |
-
# Generate the probability distribution over the vocabulary
|
95 |
-
prob = model.generator(out[:, -1]) # b * tgt_vocab_size
|
96 |
-
#print(f'shape prob {prob.shape}')
|
97 |
-
|
98 |
-
# Get the top beam_size candidates for the next word
|
99 |
-
_, top_indices = torch.topk(prob, beam_size, dim=1) # b * beam_size
|
100 |
-
|
101 |
-
for j,next_word in enumerate(top_indices[0]):
|
102 |
-
|
103 |
-
next_word = next_word.item()
|
104 |
-
|
105 |
-
# Append the next word to the target sequence
|
106 |
-
new_ys = torch.cat([ys, torch.full((1, 1), fill_value=next_word, dtype=src.dtype).to(device)], dim=1)
|
107 |
-
|
108 |
-
length_factor = (5 + j / 6) ** length_penalty
|
109 |
-
new_score = (score + prob[0][next_word].item()) / length_factor
|
110 |
-
|
111 |
-
if next_word == target_tokenizer.eos_token_id:
|
112 |
-
complete_beams.append((new_ys, new_score))
|
113 |
-
else:
|
114 |
-
new_beams.append((new_ys, new_score))
|
115 |
-
|
116 |
-
|
117 |
-
# Sort the beams by score and select the top beam_size beams
|
118 |
-
new_beams.sort(key=lambda x: x[1], reverse=True)
|
119 |
-
try:
|
120 |
-
beams = new_beams[:beam_size]
|
121 |
-
except:
|
122 |
-
beams = new_beams
|
123 |
-
|
124 |
-
beams = new_beams + complete_beams
|
125 |
-
beams.sort(key=lambda x: x[1], reverse=True)
|
126 |
-
|
127 |
-
best_beam = beams[0][0]
|
128 |
-
return best_beam
|
129 |
-
|
130 |
-
def translate(model: torch.nn.Module, strategy:str = 'greedy' , src_sentence: str, lenght_extend :int = 5, beam_size: int = 5, length_penalty:float = 0.6):
|
131 |
-
assert strategy in ['greedy','beam search'], 'the strategy for decoding has to be either greedy or beam search'
|
132 |
-
# Tokenize the source sentence
|
133 |
-
src = source_tokenizer(src_sentence, **token_config)['input_ids']
|
134 |
-
num_tokens = src.shape[1]
|
135 |
-
# Create a source mask
|
136 |
-
src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
|
137 |
-
if strategy == 'greedy':
|
138 |
-
tgt_tokens = greedy_decode(model, src, src_mask, max_len=num_tokens + lenght_extend, start_symbol=target_tokenizer.bos_token_id).flatten()
|
139 |
-
# Generate the target tokens using beam search decoding
|
140 |
-
else:
|
141 |
-
tgt_tokens = beam_search_decode(model, src, src_mask, max_len=num_tokens + lenght_extend, start_symbol=target_tokenizer.bos_token_id, beam_size=beam_size,length_penalty=length_penalty).flatten()
|
142 |
-
# Decode the target tokens and clean up the result
|
143 |
-
return target_tokenizer.decode(tgt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True)
|
144 |
-
|
145 |
-
special_tokens = {'unk_token':"[UNK]",
|
146 |
-
'cls_token':"[CLS]",
|
147 |
-
'eos_token': '[EOS]',
|
148 |
-
'sep_token':"[SEP]",
|
149 |
-
'pad_token':"[PAD]",
|
150 |
-
'mask_token':"[MASK]",
|
151 |
-
'bos_token':"[BOS]"}
|
152 |
-
|
153 |
-
source_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", **special_tokens)
|
154 |
-
target_tokenizer = PreTrainedTokenizerFast.from_pretrained('Sifal/E2KT')
|
155 |
-
|
156 |
-
addPreprocessing(source_tokenizer)
|
157 |
-
addPreprocessing(target_tokenizer)
|
158 |
-
|
159 |
-
token_config = {
|
160 |
-
"add_special_tokens": True,
|
161 |
-
"return_tensors": True,
|
162 |
-
}
|
163 |
-
|
164 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
165 |
-
|
166 |
-
model = load_model()
|
167 |
-
model.to(device)
|
168 |
-
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|