Sifal commited on
Commit
7c3ed50
·
verified ·
1 Parent(s): 009178b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -30
app.py CHANGED
@@ -1,48 +1,143 @@
 
 
 
 
 
1
  import gradio as gr
2
  import torch
3
  from utils.inference_utils import preprocess_image, predict
4
  from utils.train_utils import initialize_model
5
  from utils.data import CLASS_NAMES
6
 
7
- # Load the model once during app initialization
8
- model_name = "resnet"
9
- model_weights = "./pokemon_resnet.pth"
10
- num_classes = 150
11
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
 
 
 
 
12
 
13
- # Initialize and load the model
14
- model = initialize_model(model_name, num_classes).to(device)
15
- model.load_state_dict(torch.load(model_weights, map_location=device))
16
- model.eval() # Set the model to evaluation mode
17
- print('Finished initializing model')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- def classify_image(image):
20
- """Function to preprocess the image and classify it."""
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  try:
22
- return 'test'
23
- # Preprocess the uploaded image
24
- print('...preprocess_image')
 
25
  image_tensor = preprocess_image(image, (224, 224)).to(device)
26
- print('...predict')
27
  # Perform inference
28
- preds = torch.max(predict(model, image_tensor), 1)[1]
29
- print('...CLASS_NAMES')
 
 
30
  predicted_class = CLASS_NAMES[preds.item()]
31
-
 
 
 
 
 
32
  return f"Predicted class: {predicted_class}"
 
 
 
 
 
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  except Exception as e:
35
- return f"Error: {str(e)}"
 
 
36
 
37
- # Create a Gradio interface
38
- demo = gr.Interface(
39
- fn=classify_image,
40
- inputs=gr.components.Image(type="pil", label="Upload Image"),
41
- outputs=gr.components.Textbox(label="Prediction"),
42
- title="Pokemon Classifier",
43
- description="Upload an image of a Pokemon, and the model will predict its class.",
44
- )
 
 
 
45
 
46
  if __name__ == "__main__":
47
- # Launch the Gradio app
48
- demo.launch()
 
1
+ import os
2
+ import logging
3
+ import time
4
+ import traceback
5
+
6
  import gradio as gr
7
  import torch
8
  from utils.inference_utils import preprocess_image, predict
9
  from utils.train_utils import initialize_model
10
  from utils.data import CLASS_NAMES
11
 
12
+ # Configure logging
13
+ logging.basicConfig(
14
+ level=logging.INFO,
15
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
16
+ handlers=[
17
+ logging.FileHandler('pokemon_classifier.log'),
18
+ logging.StreamHandler()
19
+ ]
20
+ )
21
+ logger = logging.getLogger(__name__)
22
 
23
+ def setup_model():
24
+ """
25
+ Initialize and load the model with comprehensive error handling.
26
+
27
+ Returns:
28
+ torch.nn.Module: Loaded and prepared model
29
+ """
30
+ try:
31
+ # Configure model parameters
32
+ model_name = "resnet"
33
+ model_weights = "./pokemon_resnet.pth"
34
+ num_classes = 150
35
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
+
37
+ # Log device information
38
+ logger.info(f"Using device: {device}")
39
+
40
+ # Validate model weights file exists
41
+ if not os.path.exists(model_weights):
42
+ raise FileNotFoundError(f"Model weights file not found: {model_weights}")
43
+
44
+ # Initialize and load model
45
+ start_time = time.time()
46
+ model = initialize_model(model_name, num_classes).to(device)
47
+ model.load_state_dict(torch.load(model_weights, map_location=device))
48
+ model.eval() # Set the model to evaluation mode
49
+
50
+ logger.info(f"Model initialization completed in {time.time() - start_time:.2f} seconds")
51
+ return model, device
52
+
53
+ except Exception as e:
54
+ logger.error(f"Model initialization failed: {e}")
55
+ logger.error(traceback.format_exc())
56
+ raise
57
 
58
+ def classify_image(image, model, device):
59
+ """
60
+ Classify an uploaded image with comprehensive error handling and logging.
61
+
62
+ Args:
63
+ image (PIL.Image): Uploaded image
64
+ model (torch.nn.Module): Loaded model
65
+ device (torch.device): Computation device
66
+
67
+ Returns:
68
+ str: Prediction result or error message
69
+ """
70
+ if image is None:
71
+ return "No image uploaded"
72
+
73
  try:
74
+ start_time = time.time()
75
+
76
+ # Preprocess image
77
+ logger.info('Preprocessing image...')
78
  image_tensor = preprocess_image(image, (224, 224)).to(device)
79
+
80
  # Perform inference
81
+ logger.info('Running inference...')
82
+ with torch.no_grad(): # Disable gradient computation for inference
83
+ preds = torch.max(predict(model, image_tensor), 1)[1]
84
+
85
  predicted_class = CLASS_NAMES[preds.item()]
86
+
87
+ # Log performance metrics
88
+ inference_time = time.time() - start_time
89
+ logger.info(f"Image classification completed in {inference_time:.4f} seconds")
90
+ logger.info(f"Predicted class: {predicted_class}")
91
+
92
  return f"Predicted class: {predicted_class}"
93
+
94
+ except Exception as e:
95
+ logger.error(f"Classification error: {e}")
96
+ logger.error(traceback.format_exc())
97
+ return f"Error processing image: {str(e)}"
98
 
99
+ def create_gradio_app():
100
+ """
101
+ Create and configure the Gradio interface.
102
+
103
+ Returns:
104
+ gr.Interface: Configured Gradio interface
105
+ """
106
+ try:
107
+ # Initialize model once
108
+ model, device = setup_model()
109
+
110
+ # Create a wrapper function that includes the model and device
111
+ def classify_wrapper(image):
112
+ return classify_image(image, model, device)
113
+
114
+ demo = gr.Interface(
115
+ fn=classify_wrapper,
116
+ inputs=gr.components.Image(type="pil", label="Upload Pokemon Image"),
117
+ outputs=gr.components.Textbox(label="Prediction"),
118
+ title="Pokemon Classifier",
119
+ description="Upload an image of a Pokemon, and the model will predict its class.",
120
+ allow_flagging="never" # Disable flagging to simplify UI
121
+ )
122
+
123
+ return demo
124
+
125
  except Exception as e:
126
+ logger.critical(f"Failed to create Gradio app: {e}")
127
+ logger.critical(traceback.format_exc())
128
+ raise
129
 
130
+ def main():
131
+ try:
132
+ demo = create_gradio_app()
133
+ demo.launch(
134
+ server_name="0.0.0.0", # Important for Docker
135
+ server_port=7860, # Standard Hugging Face Spaces port
136
+ share=False
137
+ )
138
+ except Exception as e:
139
+ logger.critical(f"Application launch failed: {e}")
140
+ logger.critical(traceback.format_exc())
141
 
142
  if __name__ == "__main__":
143
+ main()