CLIPSegmentation / utils.py
Sijuade's picture
Update utils.py
53a165e
raw
history blame
5.51 kB
import torch
from PIL import Image
from torchvision import transforms
from clipseg import CLIPDensePredT
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.Resize((352, 352), antialias=True),
])
model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64)
model.eval()
model.load_state_dict(torch.load('weights/rd64-uni.pth',
map_location=torch.device('cpu')), strict=False)
def predict(image, prompts):
"""
Predict segmentation masks for the given image based on the provided prompts.
Parameters:
- image (PIL.Image): The input image.
- prompts (str): A comma-separated string of prompts.
- Model (torch.nn): Segmentation Model.
Returns:
- tuple: A tuple containing the resized input image and a list of segmentation masks.
"""
img = transform(image).unsqueeze(0)
# Split the prompts string into a list of individual prompts
prompts = prompts.split(',')
num_prompts = len(prompts)
# Ensure no gradient computation during prediction for performance
with torch.no_grad():
# Get model predictions for each prompt
preds = model(img.repeat(len(prompts), 1, 1, 1), prompts)[0]
# Convert model predictions to segmentation masks
masks = [torch.sigmoid(preds[i][0]) for i in range(num_prompts)]
masks = [(m.squeeze(0).numpy(), prompts[i]) for i, m in enumerate(masks)]
# Return the resized input image and the list of segmentation masks
return (image.resize((352, 352), Image.LANCZOS), masks)
def get_examples():
examples = [
['images/000013.jpg', 'deer, tree, grass'],
['images/000002.jpg', 'train, tracks, electric pole, house'],
['images/00125.jpg', 'dog, flowers'],
['images/000010.jpg', 'horse, man, fence, buildings, hill'],
['images/000004.jpg', 'car, truck, building, sky, traffic light, tree, clouds']
]
return(examples)
def get_html():
html_string = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Multi-Prompt Image Segmentation</title>
<link href="https://fonts.googleapis.com/css2?family=Roboto+Slab:wght@400;700&display=swap" rel="stylesheet">
<style>
/* General styling */
body {
font-family: 'Roboto Slab', serif;
margin: 0;
padding: 0;
background-color: #f4f4f4;
}
.app-header {
background: linear-gradient(135deg, #4a90e2, #50e3c2);
color: #fff;
text-align: center;
padding: 40px 0;
border-radius: 20px;
position: relative;
overflow: hidden;
box-shadow: 0px 10px 20px rgba(0, 0, 0, 0.1);
}
/* Ellipse Overlay */
.app-header::before {
content: "";
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: rgba(255, 255, 255, 0.1);
transform: rotate(45deg);
border-radius: 50%;
}
/* Floating Shapes */
.app-header::after {
content: "";
position: absolute;
top: 20%;
right: 10%;
width: 70px;
height: 70px;
background: rgba(255, 255, 255, 0.2);
border-radius: 50%;
}
.floating-shape {
content: "";
position: absolute;
top: 10%;
left: 5%;
width: 50px;
height: 50px;
background: rgba(255, 255, 255, 0.2);
border-radius: 50%;
}
/* Text Styling */
.app-title {
font-size: 28px;
margin: 0;
font-weight: 700;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);
}
.app-description {
font-size: 18px;
margin-top: 15px;
opacity: 0.9;
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.1);
}
/* Wavy Bottom */
.wavy-bottom {
position: absolute;
bottom: -10px;
left: 0;
width: 100%;
height: 20px;
background: #f4f4f4;
border-radius: 100% 100% 0 0;
}
</style>
</head>
<body>
<!-- App Header -->
<div class="app-header">
<h1 class="app-title">Multi-Prompt Image Segmentation</h1>
<p class="app-description">Upload an image & provide multiple text prompts separated by commas. Get segmented masks for each prompt.</p>
<div class="floating-shape"></div>
<div class="wavy-bottom"></div>
</div>
<!-- Rest of the app content will go here -->
</body>
</html>
"""
return(html_string)