|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from diffusers import StableDiffusionPipeline |
|
|
|
model_id = "runwayml/stable-diffusion-v1-5" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id).to('cpu') |
|
|
|
def infer(prompt, negative, steps, scale, seed): |
|
generator = torch.Generator(device='cpu').manual_seed(seed) |
|
img = pipe( |
|
prompt, |
|
height=512, |
|
width=512, |
|
num_inference_steps=steps, |
|
guidance_scale=scale, |
|
negative_prompt = negative, |
|
generator=generator, |
|
).images |
|
return img |
|
|
|
block = gr.Blocks() |
|
|
|
with block: |
|
with gr.Group(): |
|
with gr.Box(): |
|
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): |
|
with gr.Column(): |
|
text = gr.Textbox( |
|
label="Enter your prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
).style( |
|
border=(True, False, True, True), |
|
rounded=(True, False, False, True), |
|
container=False, |
|
) |
|
|
|
negative = gr.Textbox( |
|
label="Enter your negative prompt", |
|
show_label=False, |
|
placeholder="Enter a negative prompt", |
|
elem_id="negative-prompt-text-input", |
|
).style( |
|
border=(True, False, True, True), |
|
rounded=(True, False, False, True),container=False, |
|
) |
|
|
|
btn = gr.Button("Generate image").style( |
|
margin=False, |
|
rounded=(False, True, True, False), |
|
) |
|
gallery = gr.Gallery( |
|
label="Generated images", show_label=False, elem_id="gallery" |
|
).style(columns=(1, 2), height="auto") |
|
|
|
with gr.Row(elem_id="advanced-options"): |
|
samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1, interactive=False) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=12, step=1, interactive=True) |
|
scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1, interactive=True) |
|
seed = gr.Slider(label="Random seed",minimum=0,maximum=2147483647,step=1,randomize=True,interactive=True) |
|
|
|
btn.click(infer, inputs=[text, negative, steps, scale, seed], outputs=[gallery]) |
|
|
|
block.launch(show_api=False) |