File size: 10,370 Bytes
b93970c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40e984c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from modules.commons.common_layers import *
from modules.commons.common_layers import Embedding
from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \
    EnergyPredictor, FastspeechEncoder
from utils.cwt import cwt2f0
from utils.hparams import hparams
from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0
from modules.fastspeech.fs2 import FastSpeech2


class FastspeechMIDIEncoder(FastspeechEncoder):
    def forward_embedding(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding):
        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(txt_tokens)
        x = x + midi_embedding + midi_dur_embedding + slur_embedding
        if hparams['use_pos_embed']:
            if hparams.get('rel_pos') is not None and hparams['rel_pos']:
                x = self.embed_positions(x)
            else:
                positions = self.embed_positions(txt_tokens)
                x = x + positions
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x

    def forward(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding):
        """

        :param txt_tokens: [B, T]
        :return: {
            'encoder_out': [T x B x C]
        }
        """
        encoder_padding_mask = txt_tokens.eq(self.padding_idx).data
        x = self.forward_embedding(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding)  # [B, T, H]
        x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask)
        return x


FS_ENCODERS = {
    'fft': lambda hp, embed_tokens, d: FastspeechMIDIEncoder(
        embed_tokens, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'],
        num_heads=hp['num_heads']),
}


class FastSpeech2MIDI(FastSpeech2):
    def __init__(self, dictionary, out_dims=None):
        super().__init__(dictionary, out_dims)
        del self.encoder
        self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams, self.encoder_embed_tokens, self.dictionary)
        self.midi_embed = Embedding(300, self.hidden_size, self.padding_idx)
        self.midi_dur_layer = Linear(1, self.hidden_size)
        self.is_slur_embed = Embedding(2, self.hidden_size)

    def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
                ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False,
                spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
        ret = {}

        midi_embedding = self.midi_embed(kwargs['pitch_midi'])
        midi_dur_embedding, slur_embedding = 0, 0
        if kwargs.get('midi_dur') is not None:
            midi_dur_embedding = self.midi_dur_layer(kwargs['midi_dur'][:, :, None])  # [B, T, 1] -> [B, T, H]
        if kwargs.get('is_slur') is not None:
            slur_embedding = self.is_slur_embed(kwargs['is_slur'])
        encoder_out = self.encoder(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding)  # [B, T, C]
        src_nonpadding = (txt_tokens > 0).float()[:, :, None]

        # add ref style embed
        # Not implemented
        # variance encoder
        var_embed = 0

        # encoder_out_dur denotes encoder outputs for duration predictor
        # in speech adaptation, duration predictor use old speaker embedding
        if hparams['use_spk_embed']:
            spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
        elif hparams['use_spk_id']:
            spk_embed_id = spk_embed
            if spk_embed_dur_id is None:
                spk_embed_dur_id = spk_embed_id
            if spk_embed_f0_id is None:
                spk_embed_f0_id = spk_embed_id
            spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :]
            spk_embed_dur = spk_embed_f0 = spk_embed
            if hparams['use_split_spk_id']:
                spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
                spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
        else:
            spk_embed_dur = spk_embed_f0 = spk_embed = 0

        # add dur
        dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding

        mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret)

        decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])

        mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
        decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_)  # [B, T, H]

        tgt_nonpadding = (mel2ph > 0).float()[:, :, None]

        # add pitch and energy embed
        pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
        if hparams['use_pitch_embed']:
            pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
            decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
        if hparams['use_energy_embed']:
            decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)

        ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding

        if skip_decoder:
            return ret
        ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)

        return ret

    def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
        decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
        pitch_padding = mel2ph == 0
        if hparams['pitch_ar']:
            ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp, f0 if self.training else None)
            if f0 is None:
                f0 = pitch_pred[:, :, 0]
        else:
            ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp)
            if f0 is None:
                f0 = pitch_pred[:, :, 0]
            if hparams['use_uv'] and uv is None:
                uv = pitch_pred[:, :, 1] > 0

        # here f0_denorm for pitch prediction
        ret['f0_denorm'] = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding)

        # here f0_denorm for mel prediction
        if self.training:
            mask = torch.full(uv.shape, hparams.get('mask_uv_prob', 0.)).to(f0.device)
            masked_uv = torch.bernoulli(mask).bool().to(f0.device)  # prob 的概率吐出一个随机uv.
            uv_masked = uv.bool() | masked_uv
            # print((uv.float()-uv_masked.float()).mean(dim=1))
            f0_denorm = denorm_f0(f0, uv_masked, hparams, pitch_padding=pitch_padding)
        else:
            f0_denorm = ret['f0_denorm']

        if pitch_padding is not None:
            f0[pitch_padding] = 0

        pitch = f0_to_coarse(f0_denorm)  # start from 0
        pitch_embed = self.pitch_embed(pitch)
        return pitch_embed


class FastSpeech2MIDIMasked(FastSpeech2MIDI):
    def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
                ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False,
                spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
        ret = {}

        midi_dur_embedding, slur_embedding = 0, 0
        if kwargs.get('midi_dur') is not None:
            midi_dur_embedding = self.midi_dur_layer(kwargs['midi_dur'][:, :, None])  # [B, T, 1] -> [B, T, H]
        if kwargs.get('is_slur') is not None:
            slur_embedding = self.is_slur_embed(kwargs['is_slur'])
        encoder_out = self.encoder(txt_tokens, 0, midi_dur_embedding, slur_embedding)  # [B, T, C]
        src_nonpadding = (txt_tokens > 0).float()[:, :, None]

        # add ref style embed
        # Not implemented
        # variance encoder
        var_embed = 0

        # encoder_out_dur denotes encoder outputs for duration predictor
        # in speech adaptation, duration predictor use old speaker embedding
        if hparams['use_spk_embed']:
            spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
        elif hparams['use_spk_id']:
            spk_embed_id = spk_embed
            if spk_embed_dur_id is None:
                spk_embed_dur_id = spk_embed_id
            if spk_embed_f0_id is None:
                spk_embed_f0_id = spk_embed_id
            spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :]
            spk_embed_dur = spk_embed_f0 = spk_embed
            if hparams['use_split_spk_id']:
                spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
                spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
        else:
            spk_embed_dur = spk_embed_f0 = spk_embed = 0

        # add dur
        dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding

        mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret)

        decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])

        mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
        decoder_inp = torch.gather(decoder_inp, 1, mel2ph_)  # [B, T, H]

        # expanded midi
        midi_embedding = self.midi_embed(kwargs['pitch_midi'])
        midi_embedding = F.pad(midi_embedding, [0, 0, 1, 0])
        midi_embedding = torch.gather(midi_embedding, 1, mel2ph_)
        print(midi_embedding.shape, decoder_inp.shape)
        midi_mask = torch.full(midi_embedding.shape, hparams.get('mask_uv_prob', 0.)).to(midi_embedding.device)
        midi_mask = 1 - torch.bernoulli(midi_mask).bool().to(midi_embedding.device)  # prob 的概率吐出一个随机uv.

        tgt_nonpadding = (mel2ph > 0).float()[:, :, None]

        decoder_inp += midi_embedding
        decoder_inp_origin = decoder_inp
        # add pitch and energy embed
        pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
        if hparams['use_pitch_embed']:
            pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
            decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
        if hparams['use_energy_embed']:
            decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)

        ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding

        if skip_decoder:
            return ret
        ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)

        return ret