Spaces:
Build error
Build error
File size: 10,370 Bytes
b93970c 40e984c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from modules.commons.common_layers import *
from modules.commons.common_layers import Embedding
from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \
EnergyPredictor, FastspeechEncoder
from utils.cwt import cwt2f0
from utils.hparams import hparams
from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0
from modules.fastspeech.fs2 import FastSpeech2
class FastspeechMIDIEncoder(FastspeechEncoder):
def forward_embedding(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding):
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(txt_tokens)
x = x + midi_embedding + midi_dur_embedding + slur_embedding
if hparams['use_pos_embed']:
if hparams.get('rel_pos') is not None and hparams['rel_pos']:
x = self.embed_positions(x)
else:
positions = self.embed_positions(txt_tokens)
x = x + positions
x = F.dropout(x, p=self.dropout, training=self.training)
return x
def forward(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding):
"""
:param txt_tokens: [B, T]
:return: {
'encoder_out': [T x B x C]
}
"""
encoder_padding_mask = txt_tokens.eq(self.padding_idx).data
x = self.forward_embedding(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) # [B, T, H]
x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask)
return x
FS_ENCODERS = {
'fft': lambda hp, embed_tokens, d: FastspeechMIDIEncoder(
embed_tokens, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'],
num_heads=hp['num_heads']),
}
class FastSpeech2MIDI(FastSpeech2):
def __init__(self, dictionary, out_dims=None):
super().__init__(dictionary, out_dims)
del self.encoder
self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams, self.encoder_embed_tokens, self.dictionary)
self.midi_embed = Embedding(300, self.hidden_size, self.padding_idx)
self.midi_dur_layer = Linear(1, self.hidden_size)
self.is_slur_embed = Embedding(2, self.hidden_size)
def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False,
spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
ret = {}
midi_embedding = self.midi_embed(kwargs['pitch_midi'])
midi_dur_embedding, slur_embedding = 0, 0
if kwargs.get('midi_dur') is not None:
midi_dur_embedding = self.midi_dur_layer(kwargs['midi_dur'][:, :, None]) # [B, T, 1] -> [B, T, H]
if kwargs.get('is_slur') is not None:
slur_embedding = self.is_slur_embed(kwargs['is_slur'])
encoder_out = self.encoder(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) # [B, T, C]
src_nonpadding = (txt_tokens > 0).float()[:, :, None]
# add ref style embed
# Not implemented
# variance encoder
var_embed = 0
# encoder_out_dur denotes encoder outputs for duration predictor
# in speech adaptation, duration predictor use old speaker embedding
if hparams['use_spk_embed']:
spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
elif hparams['use_spk_id']:
spk_embed_id = spk_embed
if spk_embed_dur_id is None:
spk_embed_dur_id = spk_embed_id
if spk_embed_f0_id is None:
spk_embed_f0_id = spk_embed_id
spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :]
spk_embed_dur = spk_embed_f0 = spk_embed
if hparams['use_split_spk_id']:
spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
else:
spk_embed_dur = spk_embed_f0 = spk_embed = 0
# add dur
dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding
mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret)
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
# add pitch and energy embed
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
if hparams['use_pitch_embed']:
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
if hparams['use_energy_embed']:
decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)
ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding
if skip_decoder:
return ret
ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)
return ret
def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
pitch_padding = mel2ph == 0
if hparams['pitch_ar']:
ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp, f0 if self.training else None)
if f0 is None:
f0 = pitch_pred[:, :, 0]
else:
ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp)
if f0 is None:
f0 = pitch_pred[:, :, 0]
if hparams['use_uv'] and uv is None:
uv = pitch_pred[:, :, 1] > 0
# here f0_denorm for pitch prediction
ret['f0_denorm'] = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding)
# here f0_denorm for mel prediction
if self.training:
mask = torch.full(uv.shape, hparams.get('mask_uv_prob', 0.)).to(f0.device)
masked_uv = torch.bernoulli(mask).bool().to(f0.device) # prob 的概率吐出一个随机uv.
uv_masked = uv.bool() | masked_uv
# print((uv.float()-uv_masked.float()).mean(dim=1))
f0_denorm = denorm_f0(f0, uv_masked, hparams, pitch_padding=pitch_padding)
else:
f0_denorm = ret['f0_denorm']
if pitch_padding is not None:
f0[pitch_padding] = 0
pitch = f0_to_coarse(f0_denorm) # start from 0
pitch_embed = self.pitch_embed(pitch)
return pitch_embed
class FastSpeech2MIDIMasked(FastSpeech2MIDI):
def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False,
spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
ret = {}
midi_dur_embedding, slur_embedding = 0, 0
if kwargs.get('midi_dur') is not None:
midi_dur_embedding = self.midi_dur_layer(kwargs['midi_dur'][:, :, None]) # [B, T, 1] -> [B, T, H]
if kwargs.get('is_slur') is not None:
slur_embedding = self.is_slur_embed(kwargs['is_slur'])
encoder_out = self.encoder(txt_tokens, 0, midi_dur_embedding, slur_embedding) # [B, T, C]
src_nonpadding = (txt_tokens > 0).float()[:, :, None]
# add ref style embed
# Not implemented
# variance encoder
var_embed = 0
# encoder_out_dur denotes encoder outputs for duration predictor
# in speech adaptation, duration predictor use old speaker embedding
if hparams['use_spk_embed']:
spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
elif hparams['use_spk_id']:
spk_embed_id = spk_embed
if spk_embed_dur_id is None:
spk_embed_dur_id = spk_embed_id
if spk_embed_f0_id is None:
spk_embed_f0_id = spk_embed_id
spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :]
spk_embed_dur = spk_embed_f0 = spk_embed
if hparams['use_split_spk_id']:
spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
else:
spk_embed_dur = spk_embed_f0 = spk_embed = 0
# add dur
dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding
mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret)
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
# expanded midi
midi_embedding = self.midi_embed(kwargs['pitch_midi'])
midi_embedding = F.pad(midi_embedding, [0, 0, 1, 0])
midi_embedding = torch.gather(midi_embedding, 1, mel2ph_)
print(midi_embedding.shape, decoder_inp.shape)
midi_mask = torch.full(midi_embedding.shape, hparams.get('mask_uv_prob', 0.)).to(midi_embedding.device)
midi_mask = 1 - torch.bernoulli(midi_mask).bool().to(midi_embedding.device) # prob 的概率吐出一个随机uv.
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
decoder_inp += midi_embedding
decoder_inp_origin = decoder_inp
# add pitch and energy embed
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
if hparams['use_pitch_embed']:
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
if hparams['use_energy_embed']:
decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)
ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding
if skip_decoder:
return ret
ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)
return ret |